Quantum Computing with Superconducting Circuits in the Picosecond Regime

被引:11
|
作者
Zhu, Daoquan [1 ,2 ,3 ]
Jaako, Tuomas [4 ]
He, Qiongyi [1 ,2 ,3 ]
Rabl, Peter [4 ]
机构
[1] Peking Univ, Frontiers Sci Ctr Nanooptoelect, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[4] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, A-1040 Vienna, Austria
基金
北京市自然科学基金; 奥地利科学基金会; 中国国家自然科学基金;
关键词
DISCRETE LOGARITHMS; ALGORITHMS; STATE;
D O I
10.1103/PhysRevApplied.16.014024
中图分类号
O59 [应用物理学];
学科分类号
摘要
We discuss the realization of a universal set of ultrafast single- and two-qubit operations with superconducting quantum circuits and investigate the most relevant physical and technical limitations that arise when pushing for faster and faster gates. With the help of numerical optimization techniques, we establish a fundamental bound on the minimal gate time, which is determined independently of the qubit design solely by its nonlinearity. In addition, important practical restrictions arise from the finite qubit transition frequency and the limited bandwidth of the control pulses. We show that, for highly anharmonic flux qubits and commercially available control electronics, elementary single- and two-qubit operations can be implemented in about 100 ps with residual gate errors below 10-4. Under the same conditions, we simulate the complete execution of a compressed version of Shor's algorithm for factoring the number 15 in about 1 ns. These results demonstrate that, compared to state-of-the-art implementations with transmon qubits, a hundredfold increase in the speed of gate operations with superconducting circuits is still feasible.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Moving beyond the Transmon: Noise-Protected Superconducting Quantum Circuits
    Gyenis, Andras
    Di Paolo, Agustin
    Koch, Jens
    Blais, Alexandre
    Houck, Andrew A.
    Schuster, David, I
    PRX QUANTUM, 2021, 2 (03):
  • [32] Implementation of superconductor/ferromagnet/superconductor π-shifters in superconducting digital and quantum circuits
    Feofanov, A. K.
    Oboznov, V. A.
    Bol'ginov, V. V.
    Lisenfeld, J.
    Poletto, S.
    Ryazanov, V. V.
    Rossolenko, A. N.
    Khabipov, M.
    Balashov, D.
    Zorin, A. B.
    Dmitriev, P. N.
    Koshelets, V. P.
    Ustinov, A. V.
    NATURE PHYSICS, 2010, 6 (08) : 593 - 597
  • [33] Realization of three-qubit quantum error correction with superconducting circuits
    Reed, M. D.
    DiCarlo, L.
    Nigg, S. E.
    Sun, L.
    Frunzio, L.
    Girvin, S. M.
    Schoelkopf, R. J.
    NATURE, 2012, 482 (7385) : 382 - 385
  • [34] Phonon engineering of atomic-scale defects in superconducting quantum circuits
    Chen, Mo
    Owens, John Clai
    Putterman, Harald
    Schafer, Max
    Painter, Oskar
    SCIENCE ADVANCES, 2024, 10 (37):
  • [35] QuantumEyes: Towards Better Interpretability of Quantum Circuits
    Ruan, Shaolun
    Guan, Qiang
    Griffin, Paul
    Mao, Ying
    Wang, Yong
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (09) : 6321 - 6333
  • [36] Quantum computing in decoherence-free subspaces with superconducting charge qubits
    Feng, Zhi-Bo
    Zhang, Xin-Ding
    PHYSICS LETTERS A, 2007, 372 (01) : 16 - 20
  • [37] High-Fidelity Geometric Quantum Gates with Short Paths on Superconducting Circuits
    Li, Sai
    Xue, Jing
    Chen, Tao
    Xue, Zheng-Yuan
    ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (05)
  • [38] Benchmarking a Quantum Teleportation Protocol in Superconducting Circuits Using Tomography and an Entanglement Witness
    Baur, M.
    Fedorov, A.
    Steffen, L.
    Filipp, S.
    da Silva, M. P.
    Wallraff, A.
    PHYSICAL REVIEW LETTERS, 2012, 108 (04)
  • [39] Hardware-Efficient and Fully Autonomous Quantum Error Correction in Superconducting Circuits
    Kapit, Eliot
    PHYSICAL REVIEW LETTERS, 2016, 116 (15)
  • [40] Characterizing Scattering Parameters of Superconducting Quantum Integrated Circuits at Milli-Kelvin Temperatures
    Stanley, Manoj
    De Graaf, Sebastian
    Honigl-Decrinis, Teresa
    Lindstrom, Tobias
    Ridler, Nick M.
    IEEE ACCESS, 2022, 10 : 43376 - 43386