Quantum Computing with Superconducting Circuits in the Picosecond Regime

被引:11
|
作者
Zhu, Daoquan [1 ,2 ,3 ]
Jaako, Tuomas [4 ]
He, Qiongyi [1 ,2 ,3 ]
Rabl, Peter [4 ]
机构
[1] Peking Univ, Frontiers Sci Ctr Nanooptoelect, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[4] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, A-1040 Vienna, Austria
基金
北京市自然科学基金; 奥地利科学基金会; 中国国家自然科学基金;
关键词
DISCRETE LOGARITHMS; ALGORITHMS; STATE;
D O I
10.1103/PhysRevApplied.16.014024
中图分类号
O59 [应用物理学];
学科分类号
摘要
We discuss the realization of a universal set of ultrafast single- and two-qubit operations with superconducting quantum circuits and investigate the most relevant physical and technical limitations that arise when pushing for faster and faster gates. With the help of numerical optimization techniques, we establish a fundamental bound on the minimal gate time, which is determined independently of the qubit design solely by its nonlinearity. In addition, important practical restrictions arise from the finite qubit transition frequency and the limited bandwidth of the control pulses. We show that, for highly anharmonic flux qubits and commercially available control electronics, elementary single- and two-qubit operations can be implemented in about 100 ps with residual gate errors below 10-4. Under the same conditions, we simulate the complete execution of a compressed version of Shor's algorithm for factoring the number 15 in about 1 ns. These results demonstrate that, compared to state-of-the-art implementations with transmon qubits, a hundredfold increase in the speed of gate operations with superconducting circuits is still feasible.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Superconducting quantum many-body circuits for quantum simulation and computing
    Wilkinson, Samuel A.
    Hartmann, Michael J.
    APPLIED PHYSICS LETTERS, 2020, 116 (23)
  • [2] Superconducting quantum computing: a review
    Huang, He-Liang
    Wu, Dachao
    Fan, Daojin
    Zhu, Xiaobo
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (08)
  • [3] Superconducting quantum nano-circuits
    Guichard, W.
    Levy, L. P.
    Pannetier, B.
    Fournier, T.
    Buisson, O.
    Hekking, F. W. J.
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2010, 7 (4-8) : 474 - 496
  • [4] Quantum Computing: Circuits, Algorithms, and Applications
    Shafique, Muhammad Ali
    Munir, Arslan
    Latif, Imran
    IEEE ACCESS, 2024, 12 : 22296 - 22314
  • [5] Perspective on superconducting qubit quantum computing
    Ezratty, Olivier
    EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (05)
  • [6] Realising and compressing quantum circuits with quantum reservoir computing
    Ghosh, Sanjib
    Krisnanda, Tanjung
    Paterek, Tomasz
    Liew, Timothy C. H.
    COMMUNICATIONS PHYSICS, 2021, 4 (01)
  • [7] On-chip quantum simulation with superconducting circuits
    Houck, Andrew A.
    Tuereci, Hakan E.
    Koch, Jens
    NATURE PHYSICS, 2012, 8 (04) : 292 - 299
  • [8] Bosonic quantum error correction codes in superconducting quantum circuits
    Cai, Weizhou
    Ma, Yuwei
    Wang, Weiting
    Zou, Chang-Ling
    Sun, Luyan
    FUNDAMENTAL RESEARCH, 2021, 1 (01): : 50 - 67
  • [9] Testing quantum contextuality with macroscopic superconducting circuits
    Wei, L. F.
    Maruyama, Koji
    Wang, X. -B.
    You, J. Q.
    Nori, Franco
    PHYSICAL REVIEW B, 2010, 81 (17):
  • [10] Two-dimensional lattice gauge theories with superconducting quantum circuits
    Marcos, D.
    Widmer, P.
    Rico, E.
    Hafezi, M.
    Rabl, P.
    Wiese, U. -J.
    Zoller, P.
    ANNALS OF PHYSICS, 2014, 351 : 634 - 654