Quantum Zeno effect in the strong measurement regime of circuit quantum electrodynamics

被引:43
作者
Slichter, D. H. [1 ,5 ]
Muller, C. [2 ,3 ]
Vijay, R. [1 ,6 ]
Weber, S. J. [1 ,7 ]
Blais, A. [3 ,4 ]
Siddiqi, I. [1 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA
[2] Univ Queensland, Sch Math & Phys, ARC Ctr Excellence Engn Quantum Syst, St Lucia, Qld 4072, Australia
[3] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[4] Canadian Inst Adv Res, Toronto, ON, Canada
[5] NIST, Div Time & Frequency, 325 Broadway, Boulder, CO 80305 USA
[6] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Homi Bhabha Rd, Bombay 400005, Maharashtra, India
[7] MIT, Lincoln Lab, 244 Wood St, Lexington, MA 02420 USA
基金
加拿大自然科学与工程研究理事会;
关键词
quantum Zeno effect; quantum jumps; superconducting qubit; circuit QED; random telegraph signals; QUASI-STATIONARY STATE; DYNAMICS; INTERROGATION; PARADOX; TIME;
D O I
10.1088/1367-2630/18/5/053031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We observe the quantum Zeno effect-where the act of measurement slows the rate of quantum state transitions-in a superconducting qubit using linear circuit quantum electrodynamics readout and a near-quantum-limited following amplifier. Under simultaneous strong measurement and qubit drive, the qubit undergoes a series of quantum jumps between states. These jumps are visible in the experimental measurement record and are analyzed using maximum likelihood estimation to determine qubit transition rates. The observed rates agree with both analytical predictions and numerical simulations. The analysis methods are suitable for processing general noisy random telegraph signals.
引用
收藏
页数:15
相关论文
共 55 条
[1]   A relaxationless demonstration of the Quantum Zeno paradox on an individual atom [J].
Balzer, C ;
Hannemann, T ;
Reiss, D ;
Wunderlich, C ;
Neuhauser, W ;
Toschek, PE .
OPTICS COMMUNICATIONS, 2002, 211 (1-6) :235-241
[2]   Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Sank, D. ;
Jeffrey, E. ;
Chen, Y. ;
Yin, Y. ;
Chiaro, B. ;
Mutus, J. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Wenner, J. ;
White, T. C. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[3]   Deterministic generation of multiparticle entanglement by quantum Zeno dynamics [J].
Barontini, Giovanni ;
Hohmann, Leander ;
Haas, Florian ;
Esteve, Jerome ;
Reichel, Jakob .
SCIENCE, 2015, 349 (6254) :1317-1321
[4]   Classical limit of the quantum Zeno effect by environmental decoherence [J].
Bedingham, D. ;
Halliwell, J. J. .
PHYSICAL REVIEW A, 2014, 89 (04)
[5]   Freezing Coherent Field Growth in a Cavity by the Quantum Zeno Effect [J].
Bernu, J. ;
Deleglise, S. ;
Sayrin, C. ;
Kuhr, S. ;
Dotsenko, I. ;
Brune, M. ;
Raimond, J. M. ;
Haroche, S. .
PHYSICAL REVIEW LETTERS, 2008, 101 (18)
[6]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[7]   Improved qubit bifurcation readout in the straddling regime of circuit QED [J].
Boissonneault, Maxime ;
Gambetta, J. M. ;
Blais, A. .
PHYSICAL REVIEW A, 2012, 86 (02)
[8]   Improved Superconducting Qubit Readout by Qubit-Induced Nonlinearities [J].
Boissonneault, Maxime ;
Gambetta, J. M. ;
Blais, Alexandre .
PHYSICAL REVIEW LETTERS, 2010, 105 (10)
[9]   Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates [J].
Boissonneault, Maxime ;
Gambetta, J. M. ;
Blais, Alexandre .
PHYSICAL REVIEW A, 2009, 79 (01)
[10]   Quantum dynamics of an electromagnetic mode that cannot contain N photons [J].
Bretheau, L. ;
Campagne-Ibarcq, P. ;
Flurin, E. ;
Mallet, F. ;
Huard, B. .
SCIENCE, 2015, 348 (6236) :776-779