Exciton control in a room temperature bulk semiconductor with coherent strain pulses

被引:37
作者
Baldini, Edoardo [1 ,2 ,7 ]
Dominguez, Adriel [3 ]
Palmieri, Tania [1 ,2 ]
Cannelli, Oliviero [1 ,2 ]
Rubio, Angel [3 ,4 ,5 ]
Ruello, Pascal [6 ]
Chergui, Majed [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, ISIC, Lab Ultrafast Spect, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Lausanne Ctr Ultrafast Sci LACUS, CH-1015 Lausanne, Switzerland
[3] Univ Basque Country, Dept Fis Mat, Av Tolosa 72, E-20018 San Sebastian, Spain
[4] Max Planck Inst Struct & Dynam Matter, Ctr Free Electron Laser Sci, D-22761 Hamburg, Germany
[5] Simons Fdn Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[6] Le Mans Univ, CNRS, Inst Mol & Mat Mans, UMR 6283, F-72085 Le Mans, France
[7] MIT, Dept Phys, Cambridge, MA 02139 USA
基金
欧洲研究理事会;
关键词
QUANTUM-WELL STRUCTURES; GENERATION; DYNAMICS; PHONONS;
D O I
10.1126/sciadv.aax2937
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Controlling the excitonic optical properties of room temperature semiconductors using time-dependent perturbations is key to future optoelectronic applications. The optical Stark effect in bulk and low-dimensional materials has recently shown exciton shifts below 20 meV. Here, we demonstrate dynamical tuning of the exciton properties by photoinduced coherent acoustic phonons in the cheap and abundant wide-gap semiconductor anatase titanium dioxide (TiO2) in single crystalline form. The giant coupling between the excitons and the photoinduced strain pulses yields a room temperature exciton shift of 30 to 50 meV and a marked modulation of its oscillator strength. An advanced ab initio treatment of the exciton-phonon interaction fully accounts for these results, and shows that the deformation potential coupling underlies the generation and detection of the giant acoustic phonon modulations.
引用
收藏
页数:9
相关论文
共 47 条
[41]   Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields [J].
Sun, CK ;
Liang, JC ;
Yu, XY .
PHYSICAL REVIEW LETTERS, 2000, 84 (01) :179-182
[42]   SURFACE GENERATION AND DETECTION OF PHONONS BY PICOSECOND LIGHT-PULSES [J].
THOMSEN, C ;
GRAHN, HT ;
MARIS, HJ ;
TAUC, J .
PHYSICAL REVIEW B, 1986, 34 (06) :4129-4138
[43]  
Toyozawa Y., 2003, Optical Processes in Solids
[44]   Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses [J].
Wright, OB ;
Perrin, B ;
Matsuda, O ;
Gusev, VE .
PHYSICAL REVIEW B, 2001, 64 (08)
[45]   Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators [J].
Wu, Meng ;
Li, Zhenglu ;
Cao, Ting ;
Louie, Steven G. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[46]   Large polarization-dependent exciton optical Stark effect in lead iodide perovskites [J].
Yang, Ye ;
Yang, Mengjin ;
Zhu, Kai ;
Johnson, Justin C. ;
Berry, Joseph J. ;
van de lagemaat, Jao ;
Beard, Matthew C. .
NATURE COMMUNICATIONS, 2016, 7
[47]   Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction [J].
Yin, Wan-Jian ;
Chen, Shiyou ;
Yang, Ji-Hui ;
Gong, Xin-Gao ;
Yan, Yanfa ;
Wei, Su-Huai .
APPLIED PHYSICS LETTERS, 2010, 96 (22)