Some generalized coupled nonlinear Schrodinger equations and conservation laws

被引:3
作者
Liu, Wei [1 ,2 ]
Geng, Xianguo [1 ]
Xue, Bo [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, 100 Kexue Rd, Zhengzhou 450001, Henan, Peoples R China
[2] Shijiazhuang Tiedao Univ, Dept Math & Phys, 17 Northeast,Second Inner Ring, Shijiazhuang 050043, Hebei, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2017年 / 31卷 / 32期
基金
中国国家自然科学基金;
关键词
Generalized coupled nonlinear Schrodinger equation; generalized coupled derivative nonlinear Schrodinger equation; conservation laws; INTEGRABLE SYSTEMS; TRANSFORMATION; HIERARCHY;
D O I
10.1142/S0217984917502992
中图分类号
O59 [应用物理学];
学科分类号
摘要
Based on zero-curvature equation, a series of new four-component nonlinear Schrodinger-type equations related to a 3x3 matrix problem are proposed by using the polynomial expansion of the spectral parameter. As two special reductions, a generalized coupled nonlinear Schrodinger equation and a generalized coupled derivative nonlinear Schrodinger equation are obtained. And then, the infinite conservation laws for each of these four component nonlinear Schrodinger-type equations are constructed with the aid of the Riccati-type equations.
引用
收藏
页数:16
相关论文
共 28 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]   Stable and unstable vector dark solitons of coupled nonlinear Schrodinger equations: Application to two-component Bose-Einstein condensates [J].
Brazhnyi, VA ;
Konotop, VV .
PHYSICAL REVIEW E, 2005, 72 (02)
[3]   INTEGRABILITY OF NON-LINEAR HAMILTONIAN-SYSTEMS BY INVERSE SCATTERING METHOD [J].
CHEN, HH ;
LEE, YC ;
LIU, CS .
PHYSICA SCRIPTA, 1979, 20 (3-4) :490-492
[4]  
DICKEY LA, 2003, SOLITON EQUATIONS HA
[5]   A GENERALIZED KAUP-NEWELL SPECTRAL PROBLEM, SOLITON-EQUATIONS AND FINITE-DIMENSIONAL INTEGRABLE SYSTEMS [J].
GENG, XG ;
MA, WX .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1995, 108 (04) :477-486
[6]   Nonlinearization of the 3 X 3 matrix eigenvalue problem related to coupled nonlinear Schrodinger equations [J].
Geng, XG ;
Dai, HH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (01) :26-55
[7]   Darboux transformation and soliton solutions for generalized nonlinear Schrodinger equations [J].
Geng, XG ;
Tam, HW .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (05) :1508-1512
[8]   Discrete coupled derivative nonlinear Schrodinger equations and their quasi-periodic solutions [J].
Geng, Xianguo ;
Su, Ting .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (03) :433-453
[9]   An extension of integrable peakon equations with cubic nonlinearity [J].
Geng, Xianguo ;
Xue, Bo .
NONLINEARITY, 2009, 22 (08) :1847-1856
[10]   EXACT SOLUTION FOR A DERIVATIVE NON-LINEAR SCHRODINGER EQUATION [J].
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (04) :798-801