Sampling theory approach to prolate spheroidal wavefunctions

被引:41
作者
Khare, K [1 ]
George, N [1 ]
机构
[1] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 39期
关键词
D O I
10.1088/0305-4470/36/39/303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the Whittaker-Shannon sampling theorem to show that the eigenvalue problem for the sinc-kernel is equivalent to a discrete eigenvalue problem. The well-known eigenfunctions, namely, the prolate spheroidal wavefunctions, their corresponding eigenvalues and the orthogonality and completeness properties are determined without invoking the prolate spheroidal differential equation. This analysis based on the sampling theorem may be used for calculating the eigenvalues and eigenfunctions of bandlimited kernels in general as we illustrate with an additional example of the sinc(2)-kernel.
引用
收藏
页码:10011 / 10021
页数:11
相关论文
共 26 条
[1]  
[Anonymous], AM MATH SOC ABSTR
[2]  
Bertero M., 1979, INVERSE SCATTERING P
[3]   ON SPHEROIDAL WAVE FUNCTIONS OF ORDER ZERO [J].
BOUWKAMP, CJ .
JOURNAL OF MATHEMATICS AND PHYSICS, 1947, 26 (02) :79-92
[4]   GENERALIZED CONFOCAL RESONATOR THEORY [J].
BOYD, GD ;
KOGELNIK, H .
BELL SYSTEM TECHNICAL JOURNAL, 1962, 41 (04) :1347-+
[5]   CONFOCAL MULTIMODE RESONATOR FOR MILLIMETER THROUGH OPTICAL WAVELENGTH MASERS [J].
BOYD, GD ;
GORDON, JP .
BELL SYSTEM TECHNICAL JOURNAL, 1961, 40 (02) :489-+
[6]   EIGENVALUES AND EIGENVECTORS OF SYMMETRIC CENTROSYMMETRIC MATRICES [J].
CANTONI, A ;
BUTLER, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 13 (03) :275-288
[7]  
COURANT R, 1953, METHODS MATH PHYSICS
[8]  
Flammer C., 1957, SPHEROIDAL WAVE FUNC
[9]  
FRIEDEN BR, 1971, PROGR OPTICS, V9
[10]   EIGENVALUES OF SINC2 KERNEL [J].
GORI, F ;
PALMA, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1975, 8 (11) :1709-1719