Asymptotic Estimates for the Willmore Flow With Small Energy

被引:4
作者
Kuwert, Ernst [1 ]
Scheuer, Julian [1 ]
机构
[1] Albert Ludwigs Univ, Math Inst, Abt Reine Math, Ernst Zermelo Str 1, D-79104 Freiburg, Germany
关键词
SURFACES;
D O I
10.1093/imrn/rnaa015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kuwert and Schatzle showed in 2001 that the Willmore flow converges to a standard round sphere, if the initial energy is small. In this situation, we prove stability estimates for the barycenter and the quadratic moment of the surface. Moreover, in codimension one, we obtain stability bounds for the enclosed volume and averaged mean curvature. As direct applications, we recover a quasi-rigidity estimate due to De Lellis and Muller (2006) and an estimate for the isoperimetric deficit by Roger and Schatzle (2012), whose original proofs used different methods.
引用
收藏
页码:14252 / 14266
页数:15
相关论文
共 16 条
  • [1] Blatt S., 2009, Analysis, V29, P407, DOI DOI 10.1524/ANLY.2009.1017
  • [2] De Lellis C, 2005, J DIFFER GEOM, V69, P75
  • [3] Helein F., 2002, HARMONIC MAPS CONSER, V150
  • [4] Removability of point singularities of Willmore surfaces
    Kuwert, E
    Schätzle, R
    [J]. ANNALS OF MATHEMATICS, 2004, 160 (01) : 315 - 357
  • [5] Gradient flow for the Willmore functional
    Kuwert, E
    Schätzle, R
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2002, 10 (02) : 307 - 339
  • [6] Kuwert E, 2001, J DIFFER GEOM, V57, P409
  • [7] Optimal rigidity estimates for nearly umbilical surfaces in arbitrary codimension
    Lamm, Tobias
    Schaetzle, Reiner Michael
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (06) : 2029 - 2062
  • [8] Li P., 1982, INVENT MATH, V69, P269, DOI [10.1007/BF01399507, https://doi.org/10.1007/bf01399507]
  • [9] Mayer UF, 2003, PROG NONLINEAR DIFFE, V55, P341
  • [10] Muller S, 1995, J DIFFER GEOM, V42, P229