Using a Trial Sample on Stainless Steel 316L in a Direct Laser Deposition Process

被引:6
作者
Vildanov, Artur [1 ]
Babkin, Konstantin [1 ,2 ]
Mendagaliyev, Ruslan [2 ]
Arkhipov, Andrey [2 ]
Turichin, Gleb [2 ]
机构
[1] Peter Great St Petersburg Polytech Univ, Inst Met Mech Engn & Transport, St Petersburg 195251, Russia
[2] St Petersburg State Marine Tech Univ, Inst Laser & Welding Technol, St Petersburg 190121, Russia
关键词
direct laser deposition (DLD); direct energy deposition using laser beam (DED-LB); direct metal deposition (DMD); direct energy deposition (DED); additive manufacturing (AM); stainless steel 316L; thermocycles; macrodefects; non-fusion; MICROSTRUCTURE; CORROSION;
D O I
10.3390/met11101550
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Direct laser deposition technology is used for the manufacture of large-size products with complex geometries. As a rule, trial samples with small dimensions are made to determine the deposition parameters. In order for the resulting products to have the required performance characteristics, it is necessary to minimize the number of internal macrodefects. Non-fusion between the tracks are defects that depend on the technological mode (power, speed, track width, etc.). In this work, studies have been carried out to determine the power level at which non-fusion is formed, dwell time between the tracks on the model samples. This paper considers the issue of transferring the technological parameters of direct laser deposition from model samples to a large-sized part, and describes the procedure for making model samples.</p>
引用
收藏
页数:10
相关论文
共 21 条
[1]   Surface modification of investment cast-316L implants: Microstructure effects [J].
El-Hadad, Shimaa ;
Khalifa, Waleed ;
Nofal, Adel .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 48 :320-327
[2]   Studies on pitting corrosion and sensitization in laser rapid manufactured specimens of type 316L stainless steel [J].
Ganesh, P. ;
Giri, Raju ;
Kaul, R. ;
Sankar, P. Ram ;
Tiwari, Pragya ;
Atulkar, Ashok ;
Porwal, R. K. ;
Dayal, R. K. ;
Kukrej, L. M. .
MATERIALS & DESIGN, 2012, 39 :509-521
[3]   Geographies of production in 3D: Theoretical and research implications stemming from additive manufacturing [J].
Gress, Douglas R. ;
Kalafsky, Ronald V. .
GEOFORUM, 2015, 60 :43-52
[4]  
Gu DD, 2015, WOODH PUB SER ELECT, P163, DOI 10.1016/B978-1-78242-074-3.00007-6
[5]   High-Strain Deformation and Spallation Strength of 09CrNi2MoCu Steel Obtained by Direct Laser Deposition [J].
Klimova-Korsmik, Olga ;
Turichin, Gleb ;
Mendagaliyev, Ruslan ;
Razorenov, Sergey ;
Garkushin, Gennady ;
Savinykh, Andrey ;
Korsmik, Rudolf .
METALS, 2021, 11 (08)
[6]  
Korsmik Rudolf, 2020, Procedia CIRP, V94, P298, DOI 10.1016/j.procir.2020.09.056
[7]   Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting [J].
Murr, L. E. ;
Martinez, E. ;
Gaytan, S. M. ;
Ramirez, D. A. ;
Machado, B. I. ;
Shindo, P. W. ;
Martinez, J. L. ;
Medina, F. ;
Wooten, J. ;
Ciscel, D. ;
Ackelid, U. ;
Wicker, R. B. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (11) :3491-3508
[8]   Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies [J].
Murr, Lawrence E. ;
Gaytan, Sara M. ;
Ramirez, Diana A. ;
Martinez, Edwin ;
Hernandez, Jennifer ;
Amato, Krista N. ;
Shindo, Patrick W. ;
Medina, Francisco R. ;
Wicker, Ryan B. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2012, 28 (01) :1-14
[9]   Microstructure and Mechanical Properties of Nickel-Based Coatings Fabricated through Laser Additive Manufacturing [J].
Qian, Shaoxiang ;
Zhang, Yongkang ;
Dai, Yibo ;
Guo, Yuhang .
METALS, 2021, 11 (01) :1-13
[10]   Hardened austenite steel with columnar sub-grain structure formed by laser melting [J].
Saeidi, K. ;
Gao, X. ;
Zhong, Y. ;
Shen, Z. J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 625 :221-229