A contractive fixed point free mapping on a weakly compact convex set

被引:3
作者
Burns, Jared [1 ]
Lennard, Chris [1 ]
Sivek, Jeromy [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
contractive mapping; fixed point free mapping; nonexpansive mapping; fixed point property; closed; bounded; convex set; weakly compact convex set; OPERATORS; SPACE;
D O I
10.4064/sm223-3-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a contractive mapping on a weakly compact convex set in a Banach space that is fixed point free. This answers a long-standing open question.
引用
收藏
页码:275 / 283
页数:9
相关论文
共 12 条
[1]   A FIXED-POINT FREE NON-EXPANSIVE MAP [J].
ALSPACH, DE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 82 (03) :423-424
[4]   A characterization of the minimal invariant sets of Alspach's mapping [J].
Day, Jerry B. ;
Lennard, Chris .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) :221-227
[5]   Weak compactness is equivalent to the fixed point property in c0 [J].
Dowling, PN ;
Lennard, CJ ;
Turett, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (06) :1659-1666
[6]   ZUM PRINZIP DER KONTRAKTIVEN ABBILDUNG [J].
GOHDE, D .
MATHEMATISCHE NACHRICHTEN, 1965, 30 (3-4) :251-&
[7]   A FIXED POINT THEOREM FOR MAPPINGS WHICH DO NOT INCREASE DISTANCES [J].
KIRK, WA .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09) :1004-&
[8]  
Maurey B., 1981, SEM AN FONCT 1980 19, VVIII
[9]  
Royden H., 1988, MATH STAT
[10]  
SCHECHTMAN G, 1982, P AM MATH SOC, V84, P373