Improving bounds for eigenvalues of complex matrices using traces

被引:17
作者
Huang, Ting-Zhu [1 ]
Wang, Lin
机构
[1] Univ Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Sichuan, Peoples R China
[2] Beijing Univ, Sch Math, Beijing 100871, Peoples R China
关键词
complex matrix; eigenvalue; spectral radius; localization;
D O I
10.1016/j.laa.2007.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a complex matrix of order n with eigenvalues lambda(j) (j = 1, 2,..., n) and m be any integer satisfying rank A <= m <= n. The bound for Sigma vertical bar lambda(j)vertical bar (2) by Kress, de Vries, and Wegmann is strengthened. Furthermore, new bounds are presented to estimate the spectral radius of A using tit and traces of A, A(2), A*A and A*A - AA*. We also improve some Wolkowicz-Styan bounds and previous localization of eigenvalues in rectangular or elliptic regions using traces. Several simple lower bounds for the spectral radius are given, involving tr A, tr A(2), tr A(3), and m. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:841 / 854
页数:14
相关论文
共 9 条
[1]   ON MEASURES OF NON-NORMALITY FOR MATRICES [J].
EBERLEIN, PF .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09) :995-&
[2]  
Horn R. A., 1986, Matrix analysis
[3]   Lower bounds for the spectral radius of a matrix [J].
Horne, BG .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 263 :261-273
[4]  
Kress R., 1974, Linear Algebra and Its Applications, V8, P109, DOI 10.1016/0024-3795(74)90049-4
[5]   LOCALIZATION OF EIGENVALUES IN ELLIPTIC REGIONS [J].
ROJO, O ;
SOTO, RL ;
AVILA, T ;
ROJO, HG .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (07) :3-11
[6]   NEW EIGENVALUE ESTIMATES FOR COMPLEX MATRICES [J].
ROJO, O ;
SOTO, RL ;
ROJO, H .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 25 (03) :91-97
[7]   MORE BOUNDS FOR EIGENVALUES USING TRACES [J].
WOLKOWICZ, H ;
STYAN, GPH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 31 (JUN) :1-17
[8]   BOUNDS FOR EIGENVALUES USING TRACES [J].
WOLKOWICZ, H ;
STYAN, GPH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 29 (FEB) :471-506
[9]  
YAO MS, 2003, ADV ALGEBRA