Thermodynamic limits for optomechanical systems with conservative potentials

被引:2
作者
Ragole, Stephen [1 ,2 ]
Xu, Haitan [3 ]
Lawall, John [4 ]
Taylor, Jacob M. [1 ,2 ,3 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[3] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[4] NIST, Gaithersburg, MD 20899 USA
基金
美国国家科学基金会;
关键词
PHASE-TRANSITION; THERMAL-EQUILIBRIUM; CAVITY; GAS;
D O I
10.1103/PhysRevB.96.184106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The mechanical force from light-radiation pressure-provides an intrinsically nonlinear interaction. Consequently, optomechanical systems near their steady state, such as the canonical optical spring, can display nonanalytic behavior as a function of external parameters. This nonanalyticity, a key feature of thermodynamic phase transitions, suggests that there could be an effective thermodynamic description of optomechanical systems. Here we explicitly define the thermodynamic limit for optomechanical systems and derive a set of sufficient constraints on the system parameters as the mechanical system grows large. As an example, we show how these constraints can be satisfied in a system with Z(2) symmetry and derive a free energy, allowing us to characterize this as an equilibrium phase transition.
引用
收藏
页数:7
相关论文
共 22 条
[1]  
[Anonymous], 2011, QUANTUM PHASE TRANSI
[2]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[3]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[4]   Observation of collective friction forces due to spatial self-organization of atoms: From Rayleigh to Bragg scattering [J].
Black, AT ;
Chan, HW ;
Vuletic, V .
PHYSICAL REVIEW LETTERS, 2003, 91 (20) :203001/1-203001/4
[5]   ONSET OF GLOBAL PHASE COHERENCE IN JOSEPHSON-JUNCTION ARRAYS - A DISSIPATIVE PHASE-TRANSITION [J].
CHAKRAVARTY, S ;
INGOLD, GL ;
KIVELSON, S ;
LUTHER, A .
PHYSICAL REVIEW LETTERS, 1986, 56 (21) :2303-2306
[6]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[7]   ANALOGY BETWEEN LASER THRESHOLD REGION AND A SECOND-ORDER PHASE TRANSITION [J].
DEGIORGIO, V ;
SCULLY, MO .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 2 (04) :1170-+
[8]   DYNAMIC PHASE-TRANSITION IN NONSYMMETRICAL SPIN-GLASSES [J].
DERRIDA, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (11) :L721-L725
[9]   SLIDING CHARGE-DENSITY WAVES AS A DYNAMIC CRITICAL PHENOMENON [J].
FISHER, DS .
PHYSICAL REVIEW B, 1985, 31 (03) :1396-1427
[10]   LASERLIGHT - FIRST EXAMPLE OF A SECOND-ORDER TRANSITION FAR AWAY FROM THERMAL EQUILIBRIUM [J].
GRAHAM, R ;
HAKEN, H .
ZEITSCHRIFT FUR PHYSIK, 1970, 237 (01) :31-+