Gram-scale bottom-up flash graphene synthesis

被引:646
作者
Luong, Duy X. [1 ,2 ]
Bets, Ksenia V. [3 ]
Algozeeb, Wala Ali [2 ]
Stanford, Michael G. [2 ]
Kittrell, Carter [2 ]
Chen, Weiyin [2 ]
Salvatierra, Rodrigo V. [2 ]
Ren, Muqing [2 ]
McHugh, Emily A. [2 ]
Advincula, Paul A. [2 ]
Wang, Zhe [2 ]
Bhatt, Mahesh [4 ]
Guo, Hua [3 ]
Mancevski, Vladimir [2 ]
Shahsavari, Rouzbeh [4 ,5 ]
Yakobson, Boris I. [2 ,3 ,6 ,7 ]
Tour, James M. [2 ,3 ,6 ,7 ]
机构
[1] Rice Univ, Appl Phys Program, Houston, TX USA
[2] Rice Univ, Dept Chem, Houston, TX 77005 USA
[3] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[4] C Crete Technol, Stafford, TX 77477 USA
[5] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA
[6] Rice Univ, Smalley Curl Inst, Houston, TX 77005 USA
[7] Rice Univ, NanoCarbon Ctr, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
LIQUID-PHASE EXFOLIATION; GRAPHITE; CARBON;
D O I
10.1038/s41586-020-1938-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most bulk-scale graphene is produced by a top-down approach, exfoliating graphite, which often requires large amounts of solvent with high-energy mixing, shearing, sonication or electrochemical treatment(1-3). Although chemical oxidation of graphite to graphene oxide promotes exfoliation, it requires harsh oxidants and leaves the graphene with a defective perforated structure after the subsequent reduction step(3,4). Bottom-up synthesis of high-quality graphene is often restricted to ultrasmall amounts if performed by chemical vapour deposition or advanced synthetic organic methods, or it provides a defect-ridden structure if carried out in bulk solution(4-6). Here we show that flash Joule heating of inexpensive carbon sources-such as coal, petroleum coke, biochar, carbon black, discarded food, rubber tyres and mixed plastic waste-can afford gram-scale quantities of graphene in less than one second. The product, named flash graphene (FG) after the process used to produce it, shows turbostratic arrangement (that is, little order) between the stacked graphene layers. FG synthesis uses no furnace and no solvents or reactive gases. Yields depend on the carbon content of the source; when using a high-carbon source, such as carbon black, anthracitic coal or calcined coke, yields can range from 80 to 90 per cent with carbon purity greater than 99 per cent. No purification steps are necessary. Raman spectroscopy analysis shows a low-intensity or absent D band for FG, indicating that FG has among the lowest defect concentrations reported so far for graphene, and confirms the turbostratic stacking of FG, which is clearly distinguished from turbostratic graphite. The disordered orientation of FG layers facilitates its rapid exfoliation upon mixing during composite formation. The electric energy cost for FG synthesis is only about 7.2 kilojoules per gram, which could render FG suitable for use in bulk composites of plastic, metals, plywood, concrete and other building materials. Flash Joule heating of inexpensive carbon sources is used to produce gram-scale quantities of high-quality graphene in under a second, without the need for a furnace, solvents or reactive gases.
引用
收藏
页码:647 / 651
页数:5
相关论文
共 37 条
[1]   Accommodating volume change and imparting thermal conductivity by encapsulation of phase change materials in carbon nanoparticles [J].
Advincula, P. A. ;
de Leon, A. C. ;
Rodier, B. J. ;
Kwon, J. ;
Advincula, R. C. ;
Pentzer, E. B. .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (06) :2461-2467
[2]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[3]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[4]   Methods of graphite exfoliation [J].
Cai, Minzhen ;
Thorpe, Daniel ;
Adamson, Douglas H. ;
Schniepp, Hannes C. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (48) :24992-25002
[5]   Conversion of carbon dioxide to few-layer graphene [J].
Chakrabarti, Amartya ;
Lu, Jun ;
Skrabutenas, Jennifer C. ;
Xu, Tao ;
Xiao, Zhili ;
Maguire, John A. ;
Hosmane, Narayan S. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (26) :9491-9493
[6]   A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water [J].
Dong, Lei ;
Chen, Zhongxin ;
Zhao, Xiaoxu ;
Ma, Jianhua ;
Lin, Shan ;
Li, Mengxiong ;
Bao, Yang ;
Chu, Leiqiang ;
Leng, Kai ;
Lu, Hongbin ;
Loh, Kian Ping .
NATURE COMMUNICATIONS, 2018, 9
[7]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[10]   CRYSTALLITE GROWTH IN GRAPHITIZING AND NON-GRAPHITIZING CARBONS [J].
FRANKLIN, RE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 209 (1097) :196-&