MONGE-AMPERE MEASURES FOR CONVEX BODIES AND BERNSTEIN-MARKOV TYPE INEQUALITIES

被引:19
作者
Burns, D. [1 ]
Levenberg, N. [2 ]
Ma'u, S. [3 ]
Revesz, Sz. [4 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[3] Univ S Pacific, Div Math, SCIMS, Suva, Fiji
[4] Hungarian Acad Sci, A Renyi Inst Math, H-1364 Budapest, Hungary
关键词
COMPLEX EQUILIBRIUM MEASURE; POLYNOMIALS; R(N); SETS; RN;
D O I
10.1090/S0002-9947-2010-04892-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use geometric methods to calculate a formula for the complex Monge-Ampere measure (dd(e)V(K))(n), for K is an element of R(n) subset of C(n) a convex body and V(K) Siciak-Zaharjuta extremal function. Bedford and Taylor had computed this for symmetric convex bodies K. We apply this to show that two methods for deriving Bernstein-Markov type inequalities, i.e., pointwise estimates of gradients of polynomials, yield the same results for all convex bodies. A key role is played by the geometric result that. the extremal inscribed ellipses appearing in approximation theory are the maximal area ellipses determining the complex Monge-Ampere solution V(K).
引用
收藏
页码:6325 / 6340
页数:16
相关论文
共 14 条
[1]  
[Anonymous], 1991, LONDON MATH SOC MONO
[2]  
BARAN M, 1992, MICH MATH J, V39, P395
[3]   COMPLEX EQUILIBRIUM MEASURE AND BERNSTEIN TYPE THEOREMS FOR COMPACT-SETS IN R(N) [J].
BARAN, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (02) :485-494
[4]   THE COMPLEX EQUILIBRIUM MEASURE OF A SYMMETRICAL CONVEX SET IN RN [J].
BEDFORD, E ;
TAYLOR, BA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 294 (02) :705-717
[5]  
BORWEIN P, 1995, GRADUATE TEXTS MATH
[6]   Pseudometrics, distances and multivariate polynomial inequalities [J].
Bos, Len ;
Levenberg, Norm ;
Waldron, Shayne .
JOURNAL OF APPROXIMATION THEORY, 2008, 153 (01) :80-96
[7]   Pluripotential theory for convex bodies in RN [J].
Burns, D ;
Levenberg, N ;
Ma'u, S .
MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (01) :91-111
[8]   Exterior Monge-Ampere solutions [J].
Burns, D. ;
Levenberg, N. ;
Ma'u, S. .
ADVANCES IN MATHEMATICS, 2009, 222 (02) :331-358
[9]  
LUNDIN M, 1985, MICH MATH J, V32, P197
[10]  
LUNDIN M, 1984, EXTREMAL PLURI UNPUB