LOCAL AND NONLOCAL CONTINUUM LIMITS OF ISING-TYPE ENERGIES FOR SPIN SYSTEMS

被引:19
作者
Alicandro, Roberto [1 ]
Gelli, Maria Stella [2 ]
机构
[1] Univ Cassino & Lazio Meridionale, DIEI, I-03043 Cassino, FR, Italy
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
atomistic-to-continuum limit; Gamma-convergence; spin systems; surface energies; INTEGRAL-REPRESENTATION; FINITE PERIMETER; PARTITIONS; RELAXATION; PHASE; SETS;
D O I
10.1137/140997373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study, through a Gamma-convergence procedure, the discrete to continuum limit of Ising-type energies of the form F-epsilon(u) = -Sigma(i,j) c(i,j)(epsilon) u(i)u(j), where u is a spin variable defined on a portion of a cubic lattice epsilon Z(d) boolean AND Omega, Omega being a regular bounded open set, and valued in {-1, 1}. If the constants c(i,j)(epsilon) are nonnegative and satisfy suitable coercivity and decay assumptions, we show that all possible Gamma-limits of surface scalings of the functionals F-epsilon are finite on BV (Omega; {+/- 1}) and of the form integral(Su) phi(x,v(u)) dH(d-1). If such decay assumptions are violated, we show that we may approximate nonlocal functionals of the form integral(Su) phi(v(u)) dH(d-1) + integral(Omega)integral(Omega) K(x, y) g(u(x), u(y)) dxdy. We focus on the approximation of two relevant examples: fractional perimeters and Ohta-Kawasaki-type energies. Eventually, we provide a general criterion for a ferromagnetic behavior of the energies F-epsilon even when the constants c(i,j)(epsilon) change sign. If such a criterion is satisfied, the ground states of F-epsilon are still the uniform states 1 and -1 and the continuum limit of the scaled energies is an integral surface energy of the form above.
引用
收藏
页码:895 / 931
页数:37
相关论文
共 23 条
[1]   Minimality via Second Variation for a Nonlocal Isoperimetric Problem [J].
Acerbi, E. ;
Fusco, N. ;
Morini, M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (02) :515-557
[2]  
ALBERTI G, 1994, CR ACAD SCI I-MATH, V319, P333
[3]   Variational description of bulk energies for bounded and unbounded spin systems [J].
Alicandro, R. ;
Cicalese, M. ;
Gloria, A. .
NONLINEARITY, 2008, 21 (08) :1881-1910
[4]   A general integral representation result for continuum limits of discrete energies with superlinear growth [J].
Alicandro, R ;
Cicalese, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (01) :1-37
[5]   Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint [J].
Alicandro, Roberto ;
Braides, Andrea ;
Cicalese, Marco .
NETWORKS AND HETEROGENEOUS MEDIA, 2006, 1 (01) :85-107
[6]   Domain Formation in Magnetic Polymer Composites: An Approach Via Stochastic Homogenization [J].
Alicandro, Roberto ;
Cicalese, Marco ;
Ruf, Matthias .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (02) :945-984
[7]   Integral Representation Results for Energies Defined on Stochastic Lattices and Application to Nonlinear Elasticity [J].
Alicandro, Roberto ;
Cicalese, Marco ;
Gloria, Antoine .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 200 (03) :881-943
[8]  
AMBROSIO L, 1990, J MATH PURE APPL, V69, P285
[9]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI [10.1017/S0024609301309281, 10.1093/oso/9780198502456.001.0001]
[10]   Gamma-convergence of nonlocal perimeter functionals [J].
Ambrosio, Luigi ;
De Philippis, Guido ;
Martinazzi, Luca .
MANUSCRIPTA MATHEMATICA, 2011, 134 (3-4) :377-403