General Lp-mixed width-integral of convex bodies and related inequalities

被引:4
作者
Zhou, Yanping [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2017年 / 10卷 / 08期
关键词
General L-p-mixed width-integral; general mixed width-integral; mixed width-integral; convex body;
D O I
10.22436/jnsa.010.08.30
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The conception of general L-p-mixed width-integral of convex bodies is introduced and related isoperimetric type inequality, Aleksandrov-Fenchel type inequality and a cyclic inequality are established. Further, the extremum values for the general L-p-mixed width-integral are obtained. (c) 2017 All rights reserved.
引用
收藏
页码:4372 / 4380
页数:9
相关论文
共 35 条
[11]   A Characterization of Lp intersection bodies [J].
Haberl, Christoph ;
Ludwig, Monika .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
[12]   Minkowski valuations intertwining with the special linear group [J].
Haberl, Christoph .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (05) :1565-1597
[13]   An asymmetric affine Plya-Szego principle [J].
Haberl, Christoph ;
Schuster, Franz E. ;
Xiao, Jie .
MATHEMATISCHE ANNALEN, 2012, 352 (03) :517-542
[14]  
Haberl C, 2009, J DIFFER GEOM, V83, P1
[15]   Asymmetric affine Lp Sobolev inequalities [J].
Haberl, Christoph ;
Schuster, Franz E. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (03) :641-658
[16]  
Hardy G., 1965, INEQUALITIES
[17]   Inequalities for polars of mixed projection bodies [J].
Leng, GS ;
Zhao, CJ ;
He, BW ;
Li, XY .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (02) :175-186
[18]  
Li XY, 2014, MATH INEQUAL APPL, V17, P443, DOI 10.7153/mia-17-33
[19]   Minkowski valuations [J].
Ludwig, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (10) :4191-4213
[20]  
Ludwig M., 2004, INTEGRAL GEOMETRY CO, P49