Sparse generative modeling via parameter reduction of Boltzmann machines: Application to protein-sequence families

被引:14
作者
Barrat-Charlaix, Pierre [1 ]
Muntoni, Anna Paola [2 ,3 ,4 ,5 ]
Shimagaki, Kai [4 ]
Weigt, Martin [4 ]
Zamponi, Francesco [5 ]
机构
[1] Univ Basel, Biozentrum, Swiss Inst Bioinformat, CH-4056 Basel, Switzerland
[2] Politecn Torino, Dept Appl Sci & Technol DISAT, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[3] IRCCS Candiolo, Italian Inst Genom Med, SP 142, I-10060 Candiolo, TO, Italy
[4] Sorbonne Univ, Inst Biol Paris Seine Biol Computat & Quantitat L, CNRS, F-75005 Paris, France
[5] Univ Paris, Sorbonne Univ, Lab Phys, ENS Univ,PSL,CNRS, F-75005 Paris, France
基金
欧盟地平线“2020”;
关键词
CONTACT PREDICTION; RESIDUE; LANDSCAPES;
D O I
10.1103/PhysRevE.104.024407
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Boltzmann machines (BMs) are widely used as generative models. For example, pairwise Potts models (PMs), which are instances of the BM class, provide accurate statistical models of families of evolutionarily related protein sequences. Their parameters are the local fields, which describe site-specific patterns of amino acid conservation, and the two-site couplings, which mirror the coevolution between pairs of sites. This coevolution reflects structural and functional constraints acting on protein sequences during evolution. The most conservative choice to describe the coevolution signal is to include all possible two-site couplings into the PM. This choice, typical of what is known as Direct Coupling Analysis, has been successful for predicting residue contacts in the three-dimensional structure, mutational effects, and generating new functional sequences. However, the resulting PM suffers from important overfitting effects: many couplings are small, noisy, and hardly interpretable; the PM is close to a critical point, meaning that it is highly sensitive to small parameter perturbations. In this work, we introduce a general parameter-reduction procedure for BMs, via a controlled iterative decimation of the less statistically significant couplings, identified by an information-based criterion that selects either weak or statistically unsupported couplings. For several protein families, our procedure allows one to remove more than 90% of the PM couplings, while preserving the predictive and generative properties of the original dense PM, and the resulting model is far away from criticality, hence more robust to noise.
引用
收藏
页数:20
相关论文
共 48 条
[1]  
ACKLEY DH, 1985, COGNITIVE SCI, V9, P147
[2]   Learning generative models for protein fold families [J].
Balakrishnan, Sivaraman ;
Kamisetty, Hetunandan ;
Carbonell, Jaime G. ;
Lee, Su-In ;
Langmead, Christopher James .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2011, 79 (04) :1061-1078
[3]   Large pseudocounts and L2-norm penalties are necessary for the mean-field inference of Ising and Potts models [J].
Barton, J. P. ;
Cocco, S. ;
De Leonardis, E. ;
Monasson, R. .
PHYSICAL REVIEW E, 2014, 90 (01)
[4]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkr1065, 10.1093/nar/gkh121, 10.1093/nar/gkp985]
[5]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[6]   The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data [J].
Berman, Helen ;
Henrick, Kim ;
Nakamura, Haruki ;
Markley, John L. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D301-D303
[7]   FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS [J].
BRYNGELSON, JD ;
ONUCHIC, JN ;
SOCCI, ND ;
WOLYNES, PG .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) :167-195
[8]   Inverse statistical problems: from the inverse Ising problem to data science [J].
Chau Nguyen, H. ;
Zecchina, Riccardo ;
Berg, Johannes .
ADVANCES IN PHYSICS, 2017, 66 (03) :197-261
[9]   Inverse statistical physics of protein sequences: a key issues review [J].
Cocco, Simona ;
Feinauer, Christoph ;
Figliuzzi, Matteo ;
Monasson, Remi ;
Weigt, Martin .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (03)
[10]   Emerging methods in protein co-evolution [J].
de Juan, David ;
Pazos, Florencio ;
Valencia, Alfonso .
NATURE REVIEWS GENETICS, 2013, 14 (04) :249-261