Recrystallization and size distribution of dislocated segments in cellulose microfibrils-a molecular dynamics perspective

被引:23
作者
Khodayari, Ali [1 ]
Hirn, Ulrich [2 ]
Spirk, Stefan [2 ]
Van Vuure, Aart W. [1 ]
Seveno, David [1 ]
机构
[1] Katholieke Univ Leuven, Dept Mat Engn, Kasteelpk Arenberg 44,Bus 2450, B-3000 Leuven, Belgium
[2] Graz Univ Technol, Inst Bioprod & Paper Technol, Inffeldgasse 23, A-8010 Graz, Austria
基金
比利时弗兰德研究基金会; 欧盟地平线“2020”;
关键词
Recrystallization; Dislocated cellulose; Hydrogen bonding; Cellulose nanocrystal; Cellulose microfibril; Molecular dynamics; HYDROGEN-BONDING SYSTEM; SYNCHROTRON X-RAY; I-BETA; CRYSTAL-STRUCTURE; VAPOR; TWIST; NANOCRYSTALS; DEGRADATION; MECHANICS; DIFFUSION;
D O I
10.1007/s10570-021-03906-7
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
The arrangement of cellulose molecules in natural environment on the nanoscale is still not fully resolved, with longitudinal disorder in cellulose microfibrils (CMF) being one relevant question. Particularly the length of the dislocated cellulose segments in CMFs is still under debate. Using molecular dynamics simulations, we are first investigating the phenomenon of pseudo-recrystallization of dislocated cellulose regions after cleavage of CMFs. Based on our simulations we propose that 3-4 glucose residues bordering to each side of a cellulose nanocrystal are actually reorganizing to a quasi- crystalline state, which are corroborating recent analytical investigations reporting an increase in crystallinity after acid vapor hydrolysis of CMFs. Combining our molecular dynamics simulation results with these analytical data we can estimate the length of the dislocated cellulose segments in CMFs. We propose that, for the investigated sources of biomass (cotton and ramie), the dislocation lengths are between 3.1-5.8 nm equaling to 6-11 glucose residues in the cellulose crystallites. [GRAPHICS] .
引用
收藏
页码:6007 / 6022
页数:16
相关论文
共 49 条
[1]  
Biovia DS., 2017, MAT STUDIO 2017 R2
[2]   Impact of hydrothermal and alkaline treatments of birch kraft pulp on the levelling-off degree of polymerization (LODP) of cellulose microfibrils [J].
Borrega, Marc ;
Ahvenainen, Patrik ;
Kontturi, Eero .
CELLULOSE, 2018, 25 (11) :6811-6818
[3]   The molecular origins of twist in cellulose I-beta [J].
Bu, Lintao ;
Himmel, Michael E. ;
Crowley, Michael F. .
CARBOHYDRATE POLYMERS, 2015, 125 :146-152
[4]  
Case D., 2018, AMBER 20"
[5]   Torsional Entropy at the Origin of the Reversible Temperature-Induced Phase Transition of Cellulose [J].
Chen, Pan ;
Nishiyama, Yoshiharu ;
Mazeau, Karim .
MACROMOLECULES, 2012, 45 (01) :362-368
[6]   Young's modulus calculations for cellulose Iβ by MM3 and quantum mechanics [J].
Cintron, Michael Santiago ;
Johnson, Glenn P. ;
French, Alfred D. .
CELLULOSE, 2011, 18 (03) :505-516
[7]   Role of hydrogen bonding in cellulose deformation: the leverage effect analyzed by molecular modeling [J].
Djahedi, Cyrus ;
Bergenstrahle-Wohlert, Malin ;
Berglund, Lars A. ;
Wohlert, Jakob .
CELLULOSE, 2016, 23 (04) :2315-2323
[8]   Cellulose Synthases and Synthesis in Arabidopsis [J].
Endler, Anne ;
Persson, Staffan .
MOLECULAR PLANT, 2011, 4 (02) :199-211
[9]  
French A. D., 2014, POLYSACCHARIDES, P1, DOI [10.1007/978-3-319-03751-6_33-1, DOI 10.1007/978-3-319-03751-6_33-1]
[10]   Comparison of cellooligosaccharide conformations in complexes with proteins with energy maps for cellobiose [J].
French, Alfred D. ;
Montgomery, David W. ;
Prevost, Nicolette T. ;
Edwards, J. Vincent ;
Woods, Robert J. .
CARBOHYDRATE POLYMERS, 2021, 264 (264)