Calculation of the surface energy of fcc-metals with the empirical electron surface model

被引:55
作者
Fu, Baoqin [1 ]
Liu, Wei [2 ]
Li, Zhilin [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
基金
高等学校博士学科点专项科研基金; 北京市自然科学基金;
关键词
Surface energy; fcc-metals; Empirical electron theory; Valence electron structure; Dangling bond; EMBEDDED-ATOM-METHOD; THERMAL BARRIER COATINGS; CORRECTED EFFECTIVE-MEDIUM; EQUIVALENT CRYSTAL THEORY; NOBLE-METALS; HCP-METALS; INTERATOMIC POTENTIALS; MULTILAYER RELAXATION; MOLECULAR-DYNAMICS; TRANSITION-METALS;
D O I
10.1016/j.apsusc.2010.04.108
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The empirical electron surface model (EESM) based on the empirical electron theory and the dangling bond analysis method has been used to establish a database of surface energy for low-index surfaces of fcc-metals such as Al, Mn, Co, Ni, Cu, Pd, Ag, Pt, Au, and Pb. A brief introduction of EESM will be presented in this paper. The calculated results are in agreement with experimental and other theoretical values. Comparison of the experimental results and calculation values shows that the average relative error is less than 10% and these values show a strong anisotropy. As we predicted, the surface energy of the close-packed plane (1 1 1) is the lowest one of all index surfaces. For low-index planes, the order of the surface energies is gamma((111)) < gamma((100)) < gamma((110)) < gamma((210)). It is also found that the dangling bond electron density and the spatial distribution of covalent bonds have a great influence on surface energy of various index surfaces. (C) 2010 Elsevier B. V. All rights reserved.
引用
收藏
页码:6899 / 6907
页数:9
相关论文
共 71 条
[1]   SIMPLE N-BODY POTENTIALS FOR THE NOBLE-METALS AND NICKEL [J].
ACKLAND, GJ ;
TICHY, G ;
VITEK, V ;
FINNIS, MW .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1987, 56 (06) :735-756
[2]   Surface energies of hcp metals using equivalent crystal theory [J].
Aghemenloh, E. ;
Idiodi, J. O. A. ;
Azi, S. O. .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 46 (02) :524-530
[3]   SURFACE MAGNETISM IN IRON, COBALT, AND NICKEL [J].
ALDEN, M ;
MIRBT, S ;
SKRIVER, HL ;
ROSENGAARD, NM ;
JOHANSSON, B .
PHYSICAL REVIEW B, 1992, 46 (10) :6303-6312
[4]   Electronic structure and energetics of transition metal surfaces and clusters from a new spd tight-binding method [J].
Barreteau, C ;
Spanjaard, D ;
Desjonquères, MC .
SURFACE SCIENCE, 1999, 433 :751-755
[5]   MODIFIED EMBEDDED-ATOM POTENTIALS FOR CUBIC MATERIALS AND IMPURITIES [J].
BASKES, MI .
PHYSICAL REVIEW B, 1992, 46 (05) :2727-2742
[6]   Calculation of surface properties of bcc iron [J].
Blonski, P ;
Kiejna, A .
VACUUM, 2004, 74 (02) :179-183
[7]  
Boer FRd, 1988, Cohesion in Metals
[8]   Absolute surface free energies of Pb [J].
Bombis, C ;
Emundts, A ;
Nowicki, M ;
Bonzel, HP .
SURFACE SCIENCE, 2002, 511 (1-3) :83-96
[9]   Absolute values of surface and step free energies from equilibrium crystal shapes [J].
Bonzel, HP ;
Emundts, A .
PHYSICAL REVIEW LETTERS, 2000, 84 (25) :5804-5807
[10]   ELECTRONIC-STRUCTURE, SURFACE-STATES, SURFACE-ENERGY, AND WORK FUNCTION OF THE CU(100) SURFACE [J].
BROSS, H ;
KAUZMANN, M .
PHYSICAL REVIEW B, 1995, 51 (23) :17135-17150