Experimental Validation of Optimal Parameter and Uncertainty Estimation for Structural Systems Using a Shuffled Complex Evolution Metropolis Algorithm

被引:5
作者
Tang, Hesheng [1 ,2 ]
Guo, Xueyuan [1 ]
Xie, Liyu [1 ]
Xue, Songtao [1 ]
机构
[1] Tongji Univ, Dept Disaster Mitigat Struct, Shanghai 200092, Peoples R China
[2] Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 22期
基金
上海市自然科学基金;
关键词
parameter identification; uncertainty estimation; Markov chain Monte Carlo; shuffled complex evolution metropolis algorithm; optimization algorithm; GLOBAL OPTIMIZATION; IDENTIFICATION; STRATEGY;
D O I
10.3390/app9224959
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The uncertainty in parameter estimation arises from structural systems' input and output measured errors and from structural model errors. An experimental verification of the shuffled complex evolution metropolis algorithm (SCEM-UA) for identifying the optimal parameters of structural systems and estimating their uncertainty is presented. First, the estimation framework is theoretically developed. The SCEM-UA algorithm is employed to search through feasible parameters' space and to infer the posterior distribution of the parameters automatically. The resulting posterior parameter distribution then provides the most likely estimation of parameter sets that produces the best model performance. The algorithm is subsequently validated through both numerical simulation and shaking table experiment for estimating the parameters of structural systems considering the uncertainty of available information. Finally, the proposed algorithm is extended to identify the uncertain physical parameters of a nonlinear structural system with a particle mass tuned damper (PTMD). The results demonstrate that the proposed algorithm can effectively estimate parameters with uncertainty for nonlinear structural systems, and it has a stronger anti-noise capability. Notably, the SCEM-UA method not only shows better global optimization capability compared with other heuristic optimization methods, but it also has the ability to simultaneously estimate the uncertainties associated with the posterior distributions of the structural parameters within a single optimization run.
引用
收藏
页数:20
相关论文
共 35 条
[1]  
[Anonymous], IEEE T EVOLUT COMPUT
[2]  
[Anonymous], MARKOV CHAIN MONTE C
[3]   Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation [J].
Beck, JL ;
Au, SK .
JOURNAL OF ENGINEERING MECHANICS, 2002, 128 (04) :380-391
[4]   Modal identification of structures from input/output data using the expectation-maximization algorithm and uncertainty quantification by mean of the bootstrap [J].
Cara, Javier .
STRUCTURAL CONTROL & HEALTH MONITORING, 2019, 26 (01)
[5]   EFFECTIVE AND EFFICIENT GLOBAL OPTIMIZATION FOR CONCEPTUAL RAINFALL-RUNOFF MODELS [J].
DUAN, QY ;
SOROOSHIAN, S ;
GUPTA, V .
WATER RESOURCES RESEARCH, 1992, 28 (04) :1015-1031
[6]  
Eberhart RC, 2001, IEEE C EVOL COMPUTAT, P81, DOI 10.1109/CEC.2001.934374
[7]   Estimating deterministic parameters by Bayesian inference with emphasis on estimating the uncertainty of the parameters [J].
Emery, A. F. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2009, 17 (02) :263-274
[8]   Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model [J].
Feyen, Luc ;
Vrugt, Jasper A. ;
Nuallain, Breanndan O. ;
van der Knijff, Johan ;
De Roo, Ad .
JOURNAL OF HYDROLOGY, 2007, 332 (3-4) :276-289
[9]   Identification of structural systems using an evolutionary strategy [J].
Franco, G ;
Betti, R ;
Lus, H .
JOURNAL OF ENGINEERING MECHANICS, 2004, 130 (10) :1125-1139
[10]  
Gelman A., 1992, Statist. Sci., V7, P519, DOI [DOI 10.1214/SS/1177011136, 10.1214/ss/1177011136]