Scaling and universality in river flow dynamics

被引:6
作者
De Domenico, M. [1 ]
Latora, V.
机构
[1] Scuola Super Catania, Lab Sistemi Complessi, I-95123 Catania, Italy
关键词
DETRENDED FLUCTUATION ANALYSIS; MULTIFRACTAL ANALYSIS; TURBULENCE; CHAOS;
D O I
10.1209/0295-5075/94/58002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate flow dynamics in rivers characterized by basin areas and daily mean discharge spanning different orders of magnitude. We show that the delayed increments evaluated at time scales ranging from days to months can be opportunely rescaled to the same non-Gaussian probability density function. Such a scaling breaks up above a certain critical horizon, where a behavior typical of thermodynamic systems at the critical point emerges. We finally show that both the scaling behavior and the break-up of the scaling are universal features of river flow dynamics. Copyright (C) EPLA, 2011
引用
收藏
页数:6
相关论文
共 32 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
[Anonymous], 2007, MULTISCALE ANAL COMP
[3]   Universality of rare fluctuations in turbulence and critical phenomena [J].
Bramwell, ST ;
Holdsworth, PCW ;
Pinton, JF .
NATURE, 1998, 396 (6711) :552-554
[4]   Universal fluctuations in correlated systems [J].
Bramwell, ST ;
Christensen, K ;
Fortin, JY ;
Holdsworth, PCW ;
Jensen, HJ ;
Lise, S ;
López, JM ;
Nicodemi, M ;
Pinton, JF ;
Sellitto, M .
PHYSICAL REVIEW LETTERS, 2000, 84 (17) :3744-3747
[5]   Universal fluctuations of the Danube water level: A link with turbulence, criticality and company growth [J].
Bramwell, ST ;
Fennell, T ;
Holdsworth, PCW ;
Portelli, B .
EUROPHYSICS LETTERS, 2002, 57 (03) :310-314
[6]   VELOCITY PROBABILITY DENSITY-FUNCTIONS OF HIGH REYNOLDS-NUMBER TURBULENCE [J].
CASTAING, B ;
GAGNE, Y ;
HOPFINGER, EJ .
PHYSICA D, 1990, 46 (02) :177-200
[7]   TRANSITION TOWARD DEVELOPED TURBULENCE [J].
CHABAUD, B ;
NAERT, A ;
PEINKE, J ;
CHILLA, F ;
CASTAING, B ;
HEBRAL, B .
PHYSICAL REVIEW LETTERS, 1994, 73 (24) :3227-3230
[8]   Fluctuation spectrum and size scaling of river flow and level [J].
Dahlstedt, K ;
Jensen, HJ .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 348 :596-610
[9]   MULTISCALING THEORY OF FLOOD PEAKS - REGIONAL QUANTILE ANALYSIS [J].
GUPTA, VK ;
MESA, OJ ;
DAWDY, DR .
WATER RESOURCES RESEARCH, 1994, 30 (12) :3405-3421
[10]   Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes [J].
Heneghan, C ;
McDarby, G .
PHYSICAL REVIEW E, 2000, 62 (05) :6103-6110