Automatic filter coefficient calculation in lifting scheme wavelet transform for lossless image compression

被引:1
作者
Hernandez-Bautista, Ignacio [1 ]
Ariel Carrasco-Ochoa, Jesus [2 ]
Francisco Martinez-Trinidad, Jose [2 ]
Juan Carbajal-Hernandez, Jose [3 ]
机构
[1] Catedra CONACyT, Tecnol Nacl Mexico IT Leon, Fracc Av Tecnol S-N, Leon 37290, Guanajuato, Mexico
[2] Inst Nacl Astrofis Opt & Electr, Dept Ciencias Computac, Luis Enrique Erro 1, Puebla 72840, Mexico
[3] Inst Politecn Nacl, Ctr Invest Computac, Av Juan de Dios Batiz S-N, Gustavo A Madero 07738, Cdmx, Mexico
关键词
Image compression; Lifting scheme; Wavelets; Pattern recognition; Spectral patterns; PREDICTION;
D O I
10.1007/s00371-020-01846-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, a new method for automatic filter coefficient calculation in lifting scheme wavelet transform for image lossless compression is proposed. Actually, there is no specific rule for setting filter coefficients (a, b). Therefore, this work proposes an automatic method to calculate the filter coefficients depending on the spectral analysis of each image. Also, filter coefficients are determined for five decomposition levels and for each quadrant through applying the discrete wavelet transform in the lossless image compression problem. Spectral patterns are computed and fixed into small length vectors for building different wavelet decomposition levels; these vectors are automatically computed using a 1-NN classifier. Experimental results over standard images show that calculating the wavelet filter coefficients using the proposed method generates higher compression rates (in entropy and bitstream values) against standard wavelet and linear prediction filters.
引用
收藏
页码:957 / 972
页数:16
相关论文
共 49 条
[1]   Lossless Image Compression Using Reversible Integer Wavelet Transforms and Convolutional Neural Networks [J].
Ahanonu, E. ;
Marcellin, M. W. ;
Bilgin, A. .
2018 DATA COMPRESSION CONFERENCE (DCC 2018), 2018, :395-395
[2]  
Alberti G, 2019, IEEE T INFORM THEORY, V9448, P1
[3]   FAMILIES OF MULTIRESOLUTION AND WAVELET SPACES WITH OPTIMAL PROPERTIES [J].
ALDROUBI, A ;
UNSER, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (5-6) :417-446
[4]   Lossless image compression based on optimal prediction, adaptive lifting, and conditional arithmetic coding [J].
Boulgouris, NV ;
Tzovaras, D ;
Strintzis, MC .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (01) :1-14
[5]  
Bovik A, 2005, HANDBOOK OF IMAGE AND VIDEO PROCESSING, 2ND EDITION, pV, DOI 10.1016/B978-012119792-6/50062-0
[6]  
Calderbank AR, 1997, INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL I, P596, DOI 10.1109/ICIP.1997.647983
[7]   Wavelet transforms that map integers to integers [J].
Calderbank, AR ;
Daubechies, I ;
Sweldens, W ;
Yeo, BL .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1998, 5 (03) :332-369
[8]  
California Institute of Technology, COMPUTATIONAL VISION
[9]   Lossy compression of quality scores in genomic data [J].
Canovas, Rodrigo ;
Moffat, Alistair ;
Turpin, Andrew .
BIOINFORMATICS, 2014, 30 (15) :2130-2136
[10]   Lossless generalized-LSB data embedding [J].
Celik, MU ;
Sharma, G ;
Tekalp, AM ;
Saber, E .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (02) :253-266