Row-sparse blind compressed sensing for reconstructing multi-channel EEG signals

被引:24
作者
Shukla, Ankita [1 ]
Majumdar, Angshul [1 ]
机构
[1] Indraprastha Inst Informat Technol, Delhi, India
关键词
Compressed sensing; EEG; ANALYSIS PRIOR FORMULATION; DECOMPOSITION; SEIZURE; SYSTEMS;
D O I
10.1016/j.bspc.2014.09.003
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This communication concentrates on application of blind compressed sensing (BCS) framework for reconstruction of multichannel electroencephalograph (EEG) signal for wireless body area networks (WBANs). Compressed sensing (CS) based techniques employ a known sparsifying basis (wavelet/DCT/Gabor). BCS learns the sparsifying dictionary while recovering the signal. The BCS framework was proposed for recovering sparse signals. A recent work showed that, EEG signals can be better recovered by exploiting inter-channel correlation. This led to a row-sparse recovery problem. In this work, we modify the basic BCS framework for recovering row-sparse signal ensembles - this leads to better EEG reconstruction accuracy compared to prior CS recovery methods. The success of this technique enables reducing the energy expenditure of the sensor nodes of the WBAN. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:174 / 178
页数:5
相关论文
共 18 条
[1]  
Abdulghani AM, 2009, LECT NOTES ARTIF INT, V5638, P319, DOI 10.1007/978-3-642-02812-0_38
[2]  
Aviyente S., 2007, IEEE SP SSP AUG MAD
[3]   Classification of Seizure and Nonseizure EEG Signals Using Empirical Mode Decomposition [J].
Bajaj, Varun ;
Pachori, Ram Bilas .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2012, 16 (06) :1135-1142
[4]   Sparsity and incoherence in compressive sampling [J].
Candes, Emmanuel ;
Romberg, Justin .
INVERSE PROBLEMS, 2007, 23 (03) :969-985
[5]  
Chartrand R, 2013, INT CONF ACOUST SPEE, P6009, DOI 10.1109/ICASSP.2013.6638818
[6]   Nonconvex Splitting for Regularized Low-Rank plus Sparse Decomposition [J].
Chartrand, Rick .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) :5810-5819
[7]   Energy-Efficient Data Reduction Techniques for Wireless Seizure Detection Systems [J].
Chiang, Joyce ;
Ward, Rabab K. .
SENSORS, 2014, 14 (02) :2036-2051
[8]  
Gleichman S., 2010, SENS ARR MULT SIGN P, P129
[9]   A low-power low-noise CMOS amplifier for neural recording applications [J].
Harrison, RR ;
Charles, C .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (06) :958-965
[10]  
Holleman J, 2006, PROC EUR SOLID-STATE, P134