High gain observer with updated gain for a class of MIMO nonlinear systems

被引:19
作者
Farza, M. [1 ]
Oueder, M. [1 ,2 ]
Ben Abdennour, R. [2 ]
M'Saad, M. [1 ]
机构
[1] Univ Caen, CNRS, UMR 6072, ENSICAEN,GREYC, F-14050 Caen, France
[2] ENIG Gabes, Unite Rech CONPRI, Gabes 6029, Tunisia
关键词
nonlinear system; high gain observer; Lyapunov equation; Riccati equation; exponential convergence; OUTPUT-FEEDBACK; ERROR DYNAMICS; DESIGN; LINEARIZATION; FORM; STATE; STABILIZATION; STABILITY;
D O I
10.1080/00207179.2010.550014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A high gain like observer with an updated gain is proposed for a class of MIMO nonlinear systems that are observable for any inputs. The main contribution of this article lies in the nature of the observer gain that involves a scalar time-varying design parameter governed by some scalar Riccati equation. This time-varying design parameter, chosen constant in standard high observer, allows to get an acceptable tradeoff between state reconstruction speed on the one hand versus amplification of noise on the other. Simulation results are given in order to highlight the performances of the proposed observer, namely its exponential convergence and its good behaviour in dealing with noise measurements.
引用
收藏
页码:270 / 280
页数:11
相关论文
共 48 条
[1]   High-gain observers in the presence of measurement noise: A switched-gain approach [J].
Ahrens, Jeffrey H. ;
Khalil, Hassan K. .
AUTOMATICA, 2009, 45 (04) :936-943
[2]   High gain observers with updated gain and homogeneous correction terms [J].
Andrieu, V. ;
Praly, L. ;
Astolfi, A. .
AUTOMATICA, 2009, 45 (02) :422-428
[3]   Nonlinear observers: a circle criterion design and robustness analysis [J].
Arcak, M ;
Kokotovic, P .
AUTOMATICA, 2001, 37 (12) :1923-1930
[4]   CANONICAL FORM OBSERVER DESIGN FOR NON-LINEAR TIME-VARIABLE SYSTEMS [J].
BESTLE, D ;
ZEITZ, M .
INTERNATIONAL JOURNAL OF CONTROL, 1983, 38 (02) :419-431
[5]   An adaptive high-gain observer for nonlinear systems [J].
Boizot, Nicolas ;
Busvelle, Eric ;
Gauthier, Jean-Paul .
AUTOMATICA, 2010, 46 (09) :1483-1488
[6]  
Bullinger E, 1997, IEEE DECIS CONTR P, P4348, DOI 10.1109/CDC.1997.649541
[7]   Observer design for a special class of nonlinear systems [J].
Busawon, K ;
Farza, M ;
Hammouri, H .
INTERNATIONAL JOURNAL OF CONTROL, 1998, 71 (03) :405-418
[8]   A nonlinear observer for induction motors [J].
Busawon, K ;
Yahoui, H ;
Hammouri, A ;
Grellet, G .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2001, 15 (03) :181-188
[9]   LMI-based sliding-mode observer design method [J].
Choi, HH ;
Ro, KS .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2005, 152 (01) :113-115
[10]   A LUENBERGER-LIKE OBSERVER FOR NONLINEAR-SYSTEMS [J].
CICCARELLA, G ;
DALLAMORA, M ;
GERMANI, A .
INTERNATIONAL JOURNAL OF CONTROL, 1993, 57 (03) :537-556