Hermite-Fejer interpolation for rational systems

被引:0
作者
Min, G [1 ]
机构
[1] Simon Fraser Univ, Dept Math & Stat, Ctr Expt & Construct Math, Burnaby, BC V5A 1S6, Canada
关键词
Hermite-Fejer interpolation; Grunwald interpolation; rational system; uniform approximation; mean convergence;
D O I
10.1007/s003659900088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers Hermite-Fejer and Grunwald interpolation based on the zeros of the Chebyshev polynomials for the real rational system P-n(a(1),..., a(n)) with the nonreal poles in (ak)(k=1)(n) subset of C\[-1, 1] paired by complex conjugation. This extends some well-known results of Fejer and Grunwald for the classical polynomial case.
引用
收藏
页码:517 / 529
页数:13
相关论文
共 19 条
[1]  
Achiezer N. I., 1956, Theory of approximation
[2]   CHEBYSHEV POLYNOMIALS AND MARKOV-BERNSTEIN TYPE INEQUALITIES FOR RATIONAL SPACES [J].
BORWEIN, P ;
ERDELYI, T ;
ZHANG, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 50 :501-519
[3]  
Borwein P., 1995, Grad. Texts in Math., V161
[4]   ON THE COMPUTATION OF GENERALIZED FERMI-DIRAC AND BOSE-EINSTEIN INTEGRALS [J].
GAUTSCHI, W .
COMPUTER PHYSICS COMMUNICATIONS, 1993, 74 (02) :233-238
[5]  
GAUTSCHI W, 1993, INT S NUM M, V112, P111
[6]  
GRUNWALD G, 1942, ACTA MATH, V75, P219, DOI DOI 10.1007/BF02404108
[7]  
Lorentz G.G., 1953, Bernstein Polynomials
[8]   On Grunwald interpolation [J].
Min, G .
ACTA MATHEMATICA HUNGARICA, 1996, 73 (03) :219-233
[9]  
Min G., 1992, APPROX THEORY APPL, V8, P28
[10]  
MIN G, UNPUB INEQUALITIES R