BPEC: An R Package for Bayesian Phylogeographic and Ecological Clustering

被引:8
作者
Manolopoulou, Ioanna [1 ]
Hille, Axel [2 ]
Emerson, Brent [3 ,4 ]
机构
[1] UCL, Dept Stat Sci, London WC1E 6BT, England
[2] Dr Jorg Schnitker Ltd, Inst Appl Stat, Oberntorwall 16-18, D-33602 Bielefeld, Germany
[3] Inst Prod Nat & Agrobiol, Isl Ecol & Evolut Res Grp, C Astrofis Francisco Sanchez 3, Tenerife 38206, Canary Islands, Spain
[4] Univ East Anglia, Sch Biol Sci, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 92卷 / 05期
关键词
statistical phylogeography; biogeography; population genetics; Bayesian computation; R; COALESCENT HISTORIES; INFERENCE; SPECIATION; EVOLUTION; MODEL; FROG;
D O I
10.18637/jss.v092.i05
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
BPEC is an R package for Bayesian phylogeographic and ecological clustering which allows geographical, environmental and phenotypic measurements to be combined with deoxyribonucleic acid (DNA) sequences in order to reveal geographic structuring of DNA sequence clusters consistent with migration events. DNA sequences are modelled using a collapsed version of a simplified coalescent model projected onto haplotype trees, which subsequently give rise to constrained clusterings as migrations occur. Within each cluster, a multivariate Gaussian distribution of the covariates (geographical, environmental, phenotypic) is used. Inference follows tailored reversible jump Markov chain Monte Carlo sampling so that the number of clusters (i.e., migrations) does not need to be pre-specified. A number of output plots and visualizations are provided which reflect the posterior distribution of the parameters of interest. BPEC also includes functions that create output files which can be loaded into Google Earth. The package commands are illustrated through an example dataset of the polytypic Near Eastern brown frog Rana macroenemis analyzed using BPEC.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 46 条
[1]  
[Anonymous], 2005, IGRAPH SOFTWARE PACK
[2]   Quantitative visualization of biological data in Google Earth using R2G2, an R CRAN package [J].
Arrigo, Nils ;
Albert, Loren P. ;
Mickelson, Pascal G. ;
Barker, Michael S. .
MOLECULAR ECOLOGY RESOURCES, 2012, 12 (06) :1177-1179
[3]   The performance of neighbor-joining methods of phylogenetic reconstruction [J].
Atteson, K .
ALGORITHMICA, 1999, 25 (2-3) :251-278
[4]   GLC2000:: a new approach to global land cover mapping from Earth observation data [J].
Bartholomé, E ;
Belward, AS .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (09) :1959-1977
[5]  
Beaumont MA, 2003, GENETICS, V164, P1139
[6]   Three roads diverged? Routes to phylogeographic inference [J].
Bloomquist, Erik W. ;
Lemey, Philippe ;
Suchard, Marc A. .
TRENDS IN ECOLOGY & EVOLUTION, 2010, 25 (11) :626-632
[7]  
Boulenger G.A., 1885, P ZOOL SOC LOND, P22, DOI [10.1111/j.1096-3642.1885.tb02882.x, DOI 10.1111/J.1096-3642.1885.TB02882.X]
[8]   Hierarchical and Spatially Explicit Clustering of DNA Sequences with BAPS Software [J].
Cheng, Lu ;
Connor, Thomas R. ;
Siren, Jukka ;
Aanensen, David M. ;
Corander, Jukka .
MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (05) :1224-1228
[9]   DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data [J].
Cornuet, Jean-Marie ;
Pudlo, Pierre ;
Veyssier, Julien ;
Dehne-Garcia, Alexandre ;
Gautier, Mathieu ;
Leblois, Raphael ;
Marin, Jean-Michel ;
Estoup, Arnaud .
BIOINFORMATICS, 2014, 30 (08) :1187-1189
[10]   Importance sampling on coalescent histories. II: Subdivided population models [J].
De Iorio, M ;
Griffiths, RC .
ADVANCES IN APPLIED PROBABILITY, 2004, 36 (02) :434-454