Power exhaust concepts and divertor designs for Japanese and European DEMO fusion reactors

被引:31
作者
Asakura, N. [1 ]
Hoshino, K. [2 ]
Kakudate, S. [1 ]
Subba, F. [3 ]
Vorpahl, C. [4 ]
Homma, Y. [5 ]
Utoh, H. [5 ]
Someya, Y. [5 ]
Sakamoto, Y. [5 ]
Hiwatari, R. [5 ]
Suzuki, S. [6 ]
You, J-H [7 ]
Siccinio, M. [4 ]
Federici, G. [4 ]
机构
[1] Natl Inst Quantum Sci & Technol QST, Naka, Ibaraki, Japan
[2] Keio Univ, Grad Sch Sci & Technol, Yokohama, Kanagawa, Japan
[3] Politecn Torino, Turin, Italy
[4] EUROfus Programme Management Unit, Garching, Germany
[5] Natl Inst Quantum Sci & Technol QST, Rokkasho, Japan
[6] Natl Inst Quantum Sci & Technol QST, Chiba, Japan
[7] Max Planck Inst Plasma Phys, Garching, Germany
关键词
DEMO; power exhaust; divertor; impurity seeding; divertor simulation; water-cooling divertor; Tungsten monoblock target; BROADER APPROACH; PROGRESS;
D O I
10.1088/1741-4326/ac2ff4
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Concepts of the power exhaust and divertor design have been developed, with a high priority in the pre-conceptual design phase of the Japan-Europe broader approach DEMO design activity (BA DDA). Common critical issues are the large power exhaust and its fraction in the main plasma and divertor by the radiative cooling (P (rad) (tot)/P (heat) > 0.8). Different exhaust concepts in the main plasma and divertor have been developed for Japanese (JA) and European (EU) DEMOs. JA proposed a conventional closed divertor geometry to challenge large P (sep)/R (p) handling of 30-35 MW m(-1) in order to maintain the radiation fraction in the main plasma at the ITER-level (f (rad) (main) = P (rad) (main)/P (heat) similar to 0.4) and higher plasma performance. EU challenged both increasing f (rad) (main) to similar to 0.65 and handling the ITER-level P (sep)/R (p) in the open divertor geometry. Power exhaust simulations have been performed by SONIC (JA) and SOLPS5.1 (EU) with corresponding P (sep) = 250-300 MW and 150-200 MW, respectively. Both results showed that large divertor radiation fraction (P (rad) (div)/P (sep) > 0.8) was required to reduce both peak q (target) (<= 10 MW m(-2)) and T (e,i) (div). In addition, the JA divertor performance with EU-reference P (sep) of 150 MW showed benefit of the closed geometry to reduce the peak q (target) and T (e,i) (div) near the separatrix, and to produce the partial detachment. Integrated designs of the water cooled divertor target, cassette and coolant pipe routing have been developed in both EU and JA, based on the tungsten (W) monoblock concept with Cu-alloy pipe. For year-long operation, DEMO-specific risks such as radiation embrittlement of Cu-interlayers and Cu-alloy cooling pipe were recognized, and both foresee higher water temperature (130 degrees C-200 degrees C) compared to that for ITER. At the same time, several improved technologies of high heat flux components have been developed in EU, and different heat sink design, i.e. Cu-alloy cooling pipes for targets and RAFM steel ones for the baffle, dome and cassette, was proposed in JA. The two approaches provide important case-studies of the DEMO divertor, and will significantly contribute to both DEMO designs.
引用
收藏
页数:15
相关论文
共 40 条
[1]   Simulation studies of divertor detachment and critical power exhaust parameters for Japanese DEMO design [J].
Asakura, N. ;
Hoshino, K. ;
Homma, Y. ;
Sakamoto, Y. .
NUCLEAR MATERIALS AND ENERGY, 2021, 26
[2]   Studies of power exhaust and divertor design for a 1.5 GW-level fusion power DEMO [J].
Asakura, N. ;
Hoshino, K. ;
Suzuki, S. ;
Tokunaga, S. ;
Someya, Y. ;
Utoh, H. ;
Kudo, H. ;
Sakamoto, Y. ;
Hiwatari, R. ;
Tobita, K. ;
Shimizu, K. ;
Ezato, K. ;
Seki, Y. ;
Ohno, N. ;
Ueda, Y. .
NUCLEAR FUSION, 2017, 57 (12)
[3]   Investigations of impurity seeding and radiation control for long-pulse and high-density H-mode plasmas in JT-60U [J].
Asakura, N. ;
Nakano, T. ;
Oyama, N. ;
Sakamoto, T. ;
Matsunaga, G. ;
Itami, K. .
NUCLEAR FUSION, 2009, 49 (11)
[4]   Plasma exhaust and divertor studies in Japan and Europe broader approach, DEMO design activity [J].
Asakura, Nobuyuki ;
Hoshino, Kazuo ;
Utoh, Hiroyasu ;
Someya, Youji ;
Suzuki, Satoshi ;
Bachmann, Christian ;
Reimerdes, Holger ;
Wenninger, Ronald ;
Kudo, Hironobu ;
Tokunaga, Shinsuke ;
Homma, Yuki ;
Sakamoto, Yoshiteru ;
Hiwatari, Ryoji ;
Tobita, Kenji ;
You, Jeong-Ha ;
Federici, Gianfranco ;
Ezato, Koichiro ;
Seki, Yohji ;
Ueda, Yoshio ;
Ohno, Noriyasu .
FUSION ENGINEERING AND DESIGN, 2018, 136 :1214-1220
[5]   A simulation study of large power handling in the divertor for a Demo reactor [J].
Asakura, Nobuyuki ;
Shimizu, Katsuhiro ;
Hoshino, Kazuo ;
Tobita, Kenji ;
Tokunaga, Shinsuke ;
Takizuka, Tomonori .
NUCLEAR FUSION, 2013, 53 (12)
[6]   L to H mode transition: on the role of Zeff [J].
Bourdelle, C. ;
Maggi, C. F. ;
Chone, L. ;
Beyer, P. ;
Citrin, J. ;
Fedorczak, N. ;
Garbet, X. ;
Loarte, A. ;
Millitello, F. ;
Romanelli, M. ;
Sarazin, Y. .
NUCLEAR FUSION, 2014, 54 (02)
[7]   Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix [J].
Eich, T. ;
Goldston, R. J. ;
Kallenbach, A. ;
Sieglin, B. ;
Sun, H. J. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson ;
Angelone, M. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Appelbee, C. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arshad, S. ;
Ash, A. ;
Ashikawa, N. ;
Aslanyan, V. ;
Asunta, O. ;
Auriemma, F. ;
Austin, Y. ;
Avotina, L. ;
Axton, M. D. ;
Ayres, C. ;
Bacharis, M. ;
Baciero, A. .
NUCLEAR FUSION, 2018, 58 (03)
[8]   Evaluation of copper alloys for fusion reactor divertor and first wall components [J].
Fabritsiev, SA ;
Zinkle, SJ ;
Singh, BN .
JOURNAL OF NUCLEAR MATERIALS, 1996, 233 :127-137
[9]   Overview of the DEMO staged design approach in Europe [J].
Federici, G. ;
Bachmann, C. ;
Barucca, L. ;
Baylard, C. ;
Biel, W. ;
Boccaccini, L., V ;
Bustreo, C. ;
Ciattaglia, S. ;
Cismondi, F. ;
Corator, V ;
Day, C. ;
Diegele, E. ;
Franke, T. ;
Gaio, E. ;
Gliss, C. ;
Haertl, T. ;
Ibarra, A. ;
Holden, J. ;
Keech, G. ;
Kembleton, R. ;
Loving, A. ;
Maviglial, F. ;
Morris, J. ;
Meszaros, B. ;
Moscato, I ;
Pintsuk, G. ;
Sicciniol, M. ;
Taylor, N. ;
Tran, M. Q. ;
Vorpahl, C. ;
Walden, H. ;
You, J. H. .
NUCLEAR FUSION, 2019, 59 (06)
[10]   DEMO design activity in Europe: Progress and updates [J].
Federici, G. ;
Bachmann, C. ;
Barucca, L. ;
Biel, W. ;
Boccaccini, L. ;
Brown, R. ;
Bustreo, C. ;
Ciattaglia, S. ;
Cismondi, F. ;
Coleman, M. ;
Corato, V. ;
Day, C. ;
Diegele, E. ;
Fischer, U. ;
Franke, T. ;
Gliss, C. ;
Ibarra, A. ;
Kembleton, R. ;
Loving, A. ;
Maviglia, F. ;
Meszaros, B. ;
Pintsuk, G. ;
Taylor, N. ;
Tran, M. Q. ;
Vorpahl, C. ;
Wenninger, R. ;
You, J. H. .
FUSION ENGINEERING AND DESIGN, 2018, 136 :729-741