Deep learning for collective anomaly detection

被引:29
|
作者
Ahmed, Mohiuddin [1 ]
Pathan, Al-Sakib Khan [2 ]
机构
[1] Canberra Inst Technol, Dept ICT & Lib Studies, Reid, ACT 2601, Australia
[2] Southeast Univ, Dept Comp Sci & Engn, Dhaka 1213, Bangladesh
关键词
deep learning; collective anomaly; DoS attack; network; traffic analysis;
D O I
10.1504/IJCSE.2020.105220
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning has been performing well in a number of application domains. Inspired by its popularity in domains such as image processing, speech recognition, etc., in this paper we explore the effectiveness of deep learning and other supervised learning algorithms for collective anomaly detection. Recently, collective anomaly has become popular for denial of service (DoS) attack detection, however, all these approaches are unsupervised in nature and often have high false alarm rate due to being unsupervised. Therefore, to reduce the false alarm rates, we have experimented using the deep learning method which is supervised in nature. Our experimental results on UNSW-NB15 and KDD Cup 1999 datasets show that the deep learning implemented using H2O achieves approximate to 97% recall for collective anomaly detection. Deep learning outperforms a wide range of unsupervised techniques for collective anomaly detection. The key insight of this paper is to report the efficiency of deep learning for collective anomaly detection. To the best of our knowledge, this paper is the first one to address the collective anomaly detection problem using deep learning.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 50 条
  • [31] Road Anomaly Detection Through Deep Learning Approaches
    Luo, Dawei
    Lu, Jianbo
    Guo, Gang
    IEEE ACCESS, 2020, 8 : 117390 - 117404
  • [32] Deep learning for anomaly detection in log data: A survey
    Landauer, Max
    Onder, Sebastian
    Skopik, Florian
    Wurzenberger, Markus
    MACHINE LEARNING WITH APPLICATIONS, 2023, 12
  • [33] Applications of Deep Learning Techniques to Wood Anomaly Detection
    Celik, Yaren
    Guney, Selda
    Dengiz, Berna
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT - VOL 1, 2022, 144 : 379 - 387
  • [34] Deep Hybrid Learning for Anomaly Detection in Behavioral Monitoring
    Georgakopoulos, Spiros, V
    Tasoulis, Sotiris K.
    Vrahatis, Aristidis G.
    Moustakidis, Serafeim
    Tsaopoulos, Dimitrios E.
    Plagianakos, Vassilis P.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [35] An Empirical Evaluation of Deep Learning for Network Anomaly Detection
    Malaiya, Ritesh K.
    Kwon, Donghwoon
    Suh, Sang C.
    Kim, Hyunjoo
    Kim, Ikkyun
    Kim, Jinoh
    IEEE ACCESS, 2019, 7 : 140806 - 140817
  • [36] Hyperspectral Anomaly Detection Using Deep Learning: A Review
    Hu, Xing
    Xie, Chun
    Fan, Zhe
    Duan, Qianqian
    Zhang, Dawei
    Jiang, Linhua
    Wei, Xian
    Hong, Danfeng
    Li, Guoqiang
    Zeng, Xinhua
    Chen, Wenming
    Wu, Dongfang
    Chanussot, Jocelyn
    REMOTE SENSING, 2022, 14 (09)
  • [37] A Deep Learning Approach for Efficient Anomaly Detection in WSNs
    Jothi, S. Arul
    Venkatesan, R.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2023, 18 (01)
  • [38] A Deep Learning Approach to Anomaly Detection in Nuclear Reactors
    Caliva, Francesco
    Ribeiro, Fabio De Sousa
    Mylonakis, Antonios
    Demaziere, Christophe
    Vinai, Paolo
    Leontidis, Georgios
    Kollias, Stefanos
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [39] SADDLE: Spacecraft Anomaly Detection using Deep Learning
    Srivastava, Ankit
    Badal, Neeraj
    Manoj, B. S.
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 128 - 131
  • [40] Deep learning for anomaly detection in log data: A survey
    Landauer, Max
    Onder, Sebastian
    Skopik, Florian
    Wurzenberger, Markus
    Machine Learning with Applications, 2023, 12