Deep learning for collective anomaly detection

被引:29
|
作者
Ahmed, Mohiuddin [1 ]
Pathan, Al-Sakib Khan [2 ]
机构
[1] Canberra Inst Technol, Dept ICT & Lib Studies, Reid, ACT 2601, Australia
[2] Southeast Univ, Dept Comp Sci & Engn, Dhaka 1213, Bangladesh
关键词
deep learning; collective anomaly; DoS attack; network; traffic analysis;
D O I
10.1504/IJCSE.2020.105220
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning has been performing well in a number of application domains. Inspired by its popularity in domains such as image processing, speech recognition, etc., in this paper we explore the effectiveness of deep learning and other supervised learning algorithms for collective anomaly detection. Recently, collective anomaly has become popular for denial of service (DoS) attack detection, however, all these approaches are unsupervised in nature and often have high false alarm rate due to being unsupervised. Therefore, to reduce the false alarm rates, we have experimented using the deep learning method which is supervised in nature. Our experimental results on UNSW-NB15 and KDD Cup 1999 datasets show that the deep learning implemented using H2O achieves approximate to 97% recall for collective anomaly detection. Deep learning outperforms a wide range of unsupervised techniques for collective anomaly detection. The key insight of this paper is to report the efficiency of deep learning for collective anomaly detection. To the best of our knowledge, this paper is the first one to address the collective anomaly detection problem using deep learning.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 50 条
  • [21] Deep learning for anomaly detection in log data: A survey
    Landauer, Max
    Onder, Sebastian
    Skopik, Florian
    Wurzenberger, Markus
    MACHINE LEARNING WITH APPLICATIONS, 2023, 12
  • [22] Using Deep Learning for Anomaly Detection in Autonomous Systems
    Jha, Nikhil Kumar
    von Enzberg, Sebastian
    Hillebrand, Michael
    ERCIM NEWS, 2020, (122): : 47 - 48
  • [23] Automated Socket Anomaly Detection through Deep Learning
    Agrawal, Nidhi
    Yang, Min-Jian
    Xanthopoulos, Constantinos
    Thangamariappan, Vijayakumar
    Xiao, Joe
    Ho, Chee-Wah
    Schaub, Keith
    Leventhal, Ira
    2020 IEEE INTERNATIONAL TEST CONFERENCE (ITC), 2020,
  • [24] Anomaly Detection of Breast Cancer Using Deep Learning
    Ahad Alloqmani
    Yoosef B. Abushark
    Asif Irshad Khan
    Arabian Journal for Science and Engineering, 2023, 48 : 10977 - 11002
  • [25] Scaling Deep Learning Models for Spectrum Anomaly Detection
    Li, Zhijing
    Xiao, Zhujun
    Wang, Bolun
    Zhao, Ben Y.
    Zheng, Haitao
    PROCEEDINGS OF THE 2019 THE TWENTIETH ACM INTERNATIONAL SYMPOSIUM ON MOBILE AD HOC NETWORKING AND COMPUTING (MOBIHOC '19), 2019, : 291 - 300
  • [26] Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery
    Li, Wei
    Wu, Guodong
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 597 - 601
  • [27] Network Traffic Anomaly Detection via Deep Learning
    Fotiadou, Konstantina
    Velivassaki, Terpsichori-Helen
    Voulkidis, Artemis
    Skias, Dimitrios
    Tsekeridou, Sofia
    Zahariadis, Theodore
    INFORMATION, 2021, 12 (05)
  • [28] Deep Learning for Time Series Anomaly Detection: A Survey
    Darban, Zahra zamanzadeh
    Webb, Geoffrey i.
    Pan, Shirui
    Aggarwal, Charu
    Salehi, Mahsa
    ACM COMPUTING SURVEYS, 2025, 57 (01)
  • [29] Learning deep event models for crowd anomaly detection
    Feng, Yachuang
    Yuan, Yuan
    Lu, Xiaoqiang
    NEUROCOMPUTING, 2017, 219 : 548 - 556
  • [30] A deep learning anomaly detection framework with explainability and robustness
    Nguyen, Manh-Dung
    Bouaziz, Anis
    Valdes, Valeria
    Rosa Cavalli, Ana
    Mallouli, Wissam
    de Oca, Edgardo Montes
    18TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY & SECURITY, ARES 2023, 2023,