Deep learning for collective anomaly detection

被引:29
|
作者
Ahmed, Mohiuddin [1 ]
Pathan, Al-Sakib Khan [2 ]
机构
[1] Canberra Inst Technol, Dept ICT & Lib Studies, Reid, ACT 2601, Australia
[2] Southeast Univ, Dept Comp Sci & Engn, Dhaka 1213, Bangladesh
关键词
deep learning; collective anomaly; DoS attack; network; traffic analysis;
D O I
10.1504/IJCSE.2020.105220
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning has been performing well in a number of application domains. Inspired by its popularity in domains such as image processing, speech recognition, etc., in this paper we explore the effectiveness of deep learning and other supervised learning algorithms for collective anomaly detection. Recently, collective anomaly has become popular for denial of service (DoS) attack detection, however, all these approaches are unsupervised in nature and often have high false alarm rate due to being unsupervised. Therefore, to reduce the false alarm rates, we have experimented using the deep learning method which is supervised in nature. Our experimental results on UNSW-NB15 and KDD Cup 1999 datasets show that the deep learning implemented using H2O achieves approximate to 97% recall for collective anomaly detection. Deep learning outperforms a wide range of unsupervised techniques for collective anomaly detection. The key insight of this paper is to report the efficiency of deep learning for collective anomaly detection. To the best of our knowledge, this paper is the first one to address the collective anomaly detection problem using deep learning.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 50 条
  • [1] Deep Learning for Anomaly Detection
    Pang, Guansong
    Aggarwal, Charu
    Shen, Chunhua
    Sebe, Nicu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2282 - 2286
  • [2] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Wang, Tie
    Yang, Yang
    Long, Bo
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 894 - 896
  • [3] Deep Learning for Anomaly Detection
    Wang, Ruoying
    Nie, Kexin
    Chang, Yen-Jung
    Gong, Xinwei
    Wang, Tie
    Yang, Yang
    Long, Bo
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3569 - 3570
  • [4] Deep Active Learning for Anomaly Detection
    Pimentel, Tiago
    Monteiro, Marianne
    Veloso, Adriano
    Ziviani, Nivio
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [5] Deep Learning for Anomaly Detection: A Review
    Pang, Guansong
    Shen, Chunhua
    Cao, Longbing
    Van den Hengel, Anton
    ACM COMPUTING SURVEYS, 2021, 54 (02)
  • [6] Network Anomaly Detection with Deep Learning
    Cekmez, Ugur
    Erdem, Zeki
    Yavuz, Ali Gokhan
    Sahingoz, Ozgur Koray
    Buldu, Ali
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [7] Energy Anomaly Detection with Forecasting and Deep Learning
    Hollingsworth, Keith
    Rouse, Kathryn
    Cho, Jin
    Harris, Austin
    Sartipi, Mina
    Sozer, Sevin
    Enevoldson, Bryce
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 4921 - 4925
  • [8] Robust Deep Learning Methods for Anomaly Detection
    Chalapathy, Raghavendra
    Khoa, Nguyen Lu Dang
    Chawla, Sanjay
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3507 - 3508
  • [9] Leveraging Deep Learning for Network Anomaly Detection
    Kourtis, Michail-Alexandros
    Oikonomakis, Andreas
    Papadopoulos, Dimitris
    Xylouris, George
    Chochliouros, Ioannis P.
    2021 SIXTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING (FMEC), 2021, : 91 - 96
  • [10] Hybrid deep learning and HOF for Anomaly Detection
    Hamdi, Slim
    Bouindour, Samir
    Loukil, Kais
    Snoussi, Hichem
    Abid, Mohamed
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, : 575 - 580