Some results on the annihilators and attached primes of local cohomology modules

被引:6
作者
Atazadeh, Ali [1 ]
Sedghi, Monireh [2 ]
Naghipour, Reza [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Kaleybar Branch, Kaleybar, Iran
[2] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[3] Univ Tabriz, Dept Math, Tabriz, Iran
关键词
Annihilator; Arithmetic rank; Associated prime; Attached prime; Cohomological dimension; Gorenstein ring; Local cohomology; Koszul complex; DIMENSION; COFINITENESS; RINGS;
D O I
10.1007/s00013-017-1081-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R, m) be a local ring and M a finitely generated R-module. It is shown that if M is relative Cohen-Macaulay with respect to an ideal a of R, then Ann(R)(H-a(cd(a, M)) (M)) = Ann(R) M/L = Ann(R) M and Ass(R)(R/Ann(R) M) subset of {p is an element of Ass(R) M vertical bar cd(a, R/p) = cd(a, M)}, where L is the largest submodule of M such that cd(a, L) < cd(a, M). We also show that if H-a(dimM) (M) = 0, then Att(R)(H-a(dimM-1) (M)) = {p is an element of Supp(M)vertical bar cd(a, R/p) = dim M-1}, and so the attached primes of H-a(dimM-1) (M) depend only on Supp(M)vertical bar Finally, we prove that if M is an arbitrary module (not necessarily finitely generated) over a Noetherian ring R with cd(a, M) = cd(a, R/Ann(R)M), then Att(R)(H-a(cd(a, M)) (M)) subset of {p is an element of V(Ann(R) M)| cd(a, R/p) = cd(a, M)}. As a consequence of this, it is shown that if dimM = dim R, then Att(R)(H-a(dimM) (M)) subset of {p is an element of Ass(R) M vertical bar cd(a, R/p) = dim M}.
引用
收藏
页码:415 / 427
页数:13
相关论文
共 20 条
[1]  
Aghapournahr M, 2009, MATH SCAND, V105, P161
[2]   COHOMOLOGICAL DIMENSION FILTRATION AND ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES [J].
Atazadeh, Ali ;
Sedghi, Monireh ;
Naghipour, Reza .
COLLOQUIUM MATHEMATICUM, 2015, 139 (01) :25-35
[3]   On the annihilators and attached primes of top local cohomology modules [J].
Atazadeh, Ali ;
Sedghi, Monireh ;
Naghipour, Reza .
ARCHIV DER MATHEMATIK, 2014, 102 (03) :225-236
[4]   On the annihilators of local cohomology modules [J].
Bahmanpour, Kamal ;
A'zami, Jafar ;
Ghasemi, Ghader .
JOURNAL OF ALGEBRA, 2012, 363 :8-13
[5]  
Brodmann M.P., 2013, LOCAL COHOMOLOGY ALG
[6]   Attached primes of the top local cohomology modules with respect to an ideal [J].
Dibaei, MT ;
Yassemi, S .
ARCHIV DER MATHEMATIK, 2005, 84 (04) :292-297
[7]   Cohomological dimension of complexes [J].
Dibaei, MT ;
Yassemi, S .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (11) :4375-4386
[8]   Cohomological dimension of certain algebraic varieties [J].
Divaani-Aazar, K ;
Naghipour, R ;
Tousi, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) :3537-3544
[9]   Attached primes and Matlis duals of local cohomology modules [J].
Hellus, Michael .
ARCHIV DER MATHEMATIK, 2007, 89 (03) :202-210
[10]   COFINITENESS AND VANISHING OF LOCAL COHOMOLOGY MODULES [J].
HUNEKE, C ;
KOH, J .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 110 :421-429