Dynamical Response of a Van der Pol-Duffing System with an External Harmonic Excitation and Fractional Derivative

被引:0
作者
Syta, Arkadiusz [1 ]
Litak, Grzegorz [2 ]
机构
[1] Lublin Univ Technol, Inst Technol Syst Informat, Nadbystrzycka 36, PL-20618 Lublin, Poland
[2] Lublin Univ Technol, Dept Appl Mech, PL-20618 Lublin, Poland
来源
APPLIED NON-LINEAR DYNAMICAL SYSTEMS | 2014年 / 93卷
关键词
DETERMINISTIC SYSTEMS; TIME-SERIES; CHAOS; OSCILLATOR; ORDER;
D O I
10.1007/978-3-319-08266-0_10
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We examine the Van der Pol-Duffing system with external forcing and a memory possessing a fractional damping term. The system exhibits broad spectrum of nonlinear behavior including transitions from the periodic to nonperiodic motion. Replacing a first-order derivative damping term by a fractional damping one, we include to the system memory effect which increases the dimension of the dynamical system. As a consequence of such assumptions, the quantitative nonlinear analysis meets some limitations in this case. Instead of the well-known Lyapunov exponent treatment, we advocate to use the 0-1 test that combines both statistical and frequency properties of the attractor but does not depend on the dimension of the state space. The results have been confirmed by quantitative nonlinear analysis: bifurcation diagrams, phase portraits, Poincare sections, and the maximal Lyapunov exponent estimated in the limited two-dimensional phase space.
引用
收藏
页码:139 / 150
页数:12
相关论文
共 21 条
  • [1] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [2] Stick-slip dynamics of a two-degree-of-freedom system
    Awrejcewicz, J
    Olejnik, P
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (04): : 843 - 861
  • [3] Analysis of the van der pol oscillator containing derivatives of fractional order
    Barbosa, Ramiro S.
    Machado, J. A. Tenreiro
    Vinagre, B. M.
    Calderon, A. J.
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) : 1291 - 1301
  • [4] Vibration of the Duffing oscillator: Effect of fractional damping
    Borowiec, Marek
    Litak, Grzegorz
    Syta, Arkadiusz
    [J]. SHOCK AND VIBRATION, 2007, 14 (01) : 29 - 36
  • [5] Application of the 0-1 test for chaos to experimental data
    Falconer, Ian
    Gottwald, Georg A.
    Melbourne, Ian
    Wormnes, Kjetil
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (02) : 395 - 402
  • [6] FARMER JD, 1982, PHYSICA D, V4, P366, DOI 10.1016/0167-2789(82)90042-2
  • [7] Chaos in the fractional order periodically forced complex Duffing's oscillators
    Gao, X
    Yu, JB
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 24 (04) : 1097 - 1104
  • [8] Testing for chaos in deterministic systems with noise
    Gottwald, GA
    Melbourne, I
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2005, 212 (1-2) : 100 - 110
  • [9] A new test for chaos in deterministic systems
    Gottwald, GA
    Melbourne, I
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2042): : 603 - 611
  • [10] A ROBUST METHOD TO ESTIMATE THE MAXIMAL LYAPUNOV EXPONENT OF A TIME-SERIES
    KANTZ, H
    [J]. PHYSICS LETTERS A, 1994, 185 (01) : 77 - 87