Stepanov's method applied to binomial exponential sums

被引:19
作者
Cochrane, T [1 ]
Pinner, C [1 ]
机构
[1] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
关键词
D O I
10.1093/qmath/hag020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a prime p and binomial ax(k) + bx(l) with 1 less than or equal to l < k < 1/32(p - 1)(2/3), we use Stepanov's method to obtain the bound | [GRAPHICS] where Delta = (k - l)/(k, l, p - 1).
引用
收藏
页码:243 / 255
页数:13
相关论文
共 10 条
[1]  
AKULINICHEV NM, 1965, SOV MATH DOKL, V161, P480
[2]  
COCHRANE T, IN PRESS J LONDON MA
[3]  
COCHRANE T, IN PRESS P AM MATH S
[4]  
COCHRANE T, IN PRESS ACTA ARITH
[5]   New bounds for Gauss sums derived from kth powers, and for Heilbronn's exponential sum [J].
Heath-Brown, DR ;
Konyagin, S .
QUARTERLY JOURNAL OF MATHEMATICS, 2000, 51 :221-235
[6]  
KARATSUBA AA, 1968, MATH NOTES, V1, P133
[7]  
MORDELL LJ, 1932, Q J MATH, V3, P161, DOI 10.1093/qmath/os-3.1.161
[8]  
Perelmuter G.I., 1969, MAT ZAMETKI, V5, P373
[10]   Estimates for complete exponential sums of special types [J].
Yu, HB .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2001, 131 :321-326