Equivariant eta forms and equivariant differential K-theory

被引:6
作者
Liu, Bo [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab PMMP, Sch Math Sci, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
equivariant eta form; equivariant differential K-theory; equivariant spectral section; equivariant higher spectral flow; orbifold; DIRAC OPERATORS; INDEX THEOREM; ELLIPTIC FAMILIES; FUNCTORIALITY; INVARIANTS;
D O I
10.1007/s11425-020-1852-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for a compact Lie group action, we prove the anomaly formula and the functoriality of the equivariant Bismut-Cheeger eta forms with perturbation operators when the equivariant family index vanishes. In order to prove them, we extend the Melrose-Piazza spectral section and its main properties to the equivariant case and introduce the equivariant version of the Dai-Zhang higher spectral flow for arbitrary-dimensional fibers. Using these results, we construct a new analytic model of the equivariant differential K-theory for compact manifolds when the group action has finite stabilizers only, which modifies the Bunke-Schick model of the differential K-theory. This model could also be regarded as an analytic model of the differential K-theory for compact orbifolds. Especially, we answer a question proposed by Bunke and Schick (2009) about the well-definedness of the push-forward map.
引用
收藏
页码:2159 / 2206
页数:48
相关论文
共 54 条
[1]  
Adem A., 2007, ORBIFOLDS STRINGY TO, DOI [10.1017/CBO9780511543081, DOI 10.1017/CBO9780511543081]
[2]  
[Anonymous], 2004, Ukr. Mat. Visn.
[3]  
[Anonymous], 1991, J. Amer. Math. Soc.
[4]  
Atiyah M.F., 1969, Publ. Math. IHES, V37, P5
[5]  
Atiyah M.F., 1989, Advanced Book Classics, Vsecond
[6]   INDEX OF ELLIPTIC OPERATORS .4. [J].
ATIYAH, MF ;
SINGER, IM .
ANNALS OF MATHEMATICS, 1971, 93 (01) :119-&
[7]  
Berline N., 2004, HEAT KERNELS DIRAC O, V298
[8]  
Berthomieu A, 2009, ASTERISQUE, P289
[10]   THE ANALYSIS OF ELLIPTIC FAMILIES .1. METRICS AND CONNECTIONS ON DETERMINANT BUNDLES [J].
BISMUT, JM ;
FREED, DS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (01) :159-176