Terahertz phase jumps for ultra-sensitive graphene plasmon sensing

被引:37
作者
Huang, Yi [1 ]
Zhong, Shuncong [1 ,2 ]
Shen, Yao-chun [1 ,3 ]
Yu, Yingjie [2 ]
Cui, Daxiang [4 ]
机构
[1] Fuzhou Univ, Sch Mech Engn & Automat, Lab Opt Terahertz & Nondestruct Testing, Fuzhou 350108, Fujian, Peoples R China
[2] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China
[3] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, Merseyside, England
[4] Shanghai Jiao Tong Univ, Dept Bionano Sci & Engn, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE-PLASMONS; THZ; PATHWAYS; SENSOR;
D O I
10.1039/c8nr08672a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phase behavior of the reflected terahertz radiation (THz) under surface plasmon resonance (SPR) supported by doped graphene has been comprehensively investigated via theoretical analysis with simulation verifications. For a TM-polarized wave, the dependence of the phase on the angle of incidence has a region with an abrupt jump-like change. We found in particular that the resonance phase dependence would change from step-like contour to Fano lineshape when the system passed through the optimum SPR conditions (i.e., R = 0) in terahertz regime. Monitoring the transformation could provide ultrahigh-sensitive label-free detection of biomolecules. Importantly, the characteristic of phase jumps as a readout response to achieve refractive index sensing that outperforms traditional terahertz-amplitude-based attenuated total reflection (ATR) spectroscopy is valuable. The results demonstrated a high figure of merit (FOM) of up to 171, based on the terahertz phase information. Moreover, the sensing range could be tuned by changing the surface conductivity of graphene via high doping levels or with few-layer graphene. These terahertz phase response characteristics of graphene plasmon are promising for tunable ultra-sensitivity (bio)chemical sensing applications.
引用
收藏
页码:22466 / 22473
页数:8
相关论文
共 40 条
[1]   Controlling inelastic light scattering quantum pathways in graphene [J].
Chen, Chi-Fan ;
Park, Cheol-Hwan ;
Boudouris, Bryan W. ;
Horng, Jason ;
Geng, Baisong ;
Girit, Caglar ;
Zettl, Alex ;
Crommie, Michael F. ;
Segalman, Rachel A. ;
Louie, Steven G. ;
Wang, Feng .
NATURE, 2011, 471 (7340) :617-620
[2]   Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces [J].
Cong, Longqing ;
Tan, Siyu ;
Yahiaoui, Riad ;
Yan, Fengping ;
Zhang, Weili ;
Singh, Ranjan .
APPLIED PHYSICS LETTERS, 2015, 106 (03)
[3]   Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities [J].
Efetov, Dmitri K. ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2010, 105 (25)
[4]   Space-time dispersion of graphene conductivity [J].
Falkovsky, L. A. ;
Varlamov, A. A. .
EUROPEAN PHYSICAL JOURNAL B, 2007, 56 (04) :281-284
[5]   Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors [J].
Farmer, Damon B. ;
Chiu, Hsin-Ying ;
Lin, Yu-Ming ;
Jenkins, Keith A. ;
Xia, Fengnian ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (12) :4474-4478
[6]   THz imaging and sensing for security applications - explosives, weapons and drugs [J].
Federici, JF ;
Schulkin, B ;
Huang, F ;
Gary, D ;
Barat, R ;
Oliveira, F ;
Zimdars, D .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (07) :S266-S280
[7]   CHARACTERIZATION OF DIELECTRIC-COATED, METAL MIRRORS USING SURFACE-PLASMON SPECTROSCOPY [J].
FONTANA, E ;
PANTELL, RH ;
MOSLEHI, M .
APPLIED OPTICS, 1988, 27 (16) :3334-3340
[8]   Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection [J].
Gan, Choon How .
APPLIED PHYSICS LETTERS, 2012, 101 (11)
[9]   Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies [J].
Gan, Choon How ;
Chu, Hong Son ;
Li, Er Ping .
PHYSICAL REVIEW B, 2012, 85 (12)
[10]   Surfaces with holes in them:: new plasmonic metamaterials [J].
Garcia-Vidal, FJ ;
Martín-Moreno, L ;
Pendry, JB .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2005, 7 (02) :S97-S101