Automated Classification of Pointed Sources

被引:3
作者
Zhang, Yanxia [1 ]
Zhao, Yongheng [1 ]
Zheng, Hongwen
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Opt Astron, Datun Rd 20A, Beijing 100012, Peoples R China
来源
SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY | 2010年 / 7740卷
基金
中国国家自然科学基金;
关键词
Classification; Astronomical databases: miscellaneous; Catalogs; Methods: Data Analysis; Methods: Statistical; DIGITAL SKY SURVEY; SEPARATING QUASARS; KD-TREE; SELECTION;
D O I
10.1117/12.856826
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Facing very large and frequently high dimensional data in astronomy, effectiveness and efficiency of algorithms are always the hot issue. Excellent algorithms must avoid the curse of dimensionality and simultaneously should be computationally efficient. Adopting survey data from optical bands (SDSS, USNO-B1.0) and radio band (FIRST), we investigate feature weighting and feature selection by means of random forest algorithm. Then we employ a kd-tree based k-nearest neighbor method (KD-KNN) to discriminate quasars from stars. Then the performance of this approach based on all features, weighted features and selected features are compared. The experimental result shows that the accuracy improves when using weighted features or selected features. KD-KNN is a quite easy and efficient approach to nonparametric classification. Obviously KD-KNN combined with random forests is more effective to separate quasars from stars with multi-wavelength data.
引用
收藏
页数:8
相关论文
共 21 条
[1]   MULTIDIMENSIONAL BINARY SEARCH TREES USED FOR ASSOCIATIVE SEARCHING [J].
BENTLEY, JL .
COMMUNICATIONS OF THE ACM, 1975, 18 (09) :509-517
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Random forests: Finding quasars [J].
Breiman, L ;
Last, M ;
Rice, J .
STATISTICAL CHALLENGES IN ASTRONOMY, 2003, :243-254
[4]   Quasar candidates selection in the Virtual Observatory era [J].
D'Abrusco, R. ;
Longo, G. ;
Walton, N. A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 396 (01) :223-262
[5]  
Gao D, 2008, ASTR SOC P, V394, P525
[6]   Support vector machines and kd-tree for separating quasars from large survey data bases [J].
Gao, Dan ;
Zhang, Yan-Xia ;
Zhao, Yong-Heng .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 386 (03) :1417-1425
[7]   Random forest algorithm for classification of multiwavelength data [J].
Gao, Dan ;
Zhang, Yan-Xia ;
Zhao, Yong-Heng .
RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2009, 9 (02) :220-226
[8]   A REVISED AND UPDATED CATALOG OF QUASI-STELLAR OBJECTS [J].
HEWITT, A ;
BURBIDGE, G .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1993, 87 (02) :451-947
[9]   k-Nearest Neighbors for automated classification of celestial objects [J].
Li LiLi ;
Zhang YanXia ;
Zhao YongHeng .
SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2008, 51 (07) :916-922
[10]   The USNO-B catalog [J].
Monet, DG ;
Levine, SE ;
Canzian, B ;
Ables, HD ;
Bird, AR ;
Dahn, CC ;
Guetter, HH ;
Harris, HC ;
Henden, AA ;
Leggett, SK ;
Levison, HF ;
Luginbuhl, CB ;
Martini, J ;
Monet, AKB ;
Munn, JA ;
Pier, JR ;
Rhodes, AR ;
Riepe, B ;
Sell, S ;
Stone, RC ;
Vrba, FJ ;
Walker, RL ;
Westerhout, G ;
Brucato, RJ ;
Reid, IN ;
Schoening, W ;
Hartley, M ;
Read, MA ;
Tritton, SB .
ASTRONOMICAL JOURNAL, 2003, 125 (02) :984-993