Finite Difference Delay Modeling for Two-Dimensional Transverse Magnetic Time-Domain Integral Equations

被引:3
|
作者
Lin, Yuan Qu [1 ]
Weile, Daniel S. [1 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
finite difference; integral equations; method of moments; two-dimensional transient scattering; TEMPORAL BASIS FUNCTION; TRANSIENT SCATTERING; ELECTROMAGNETIC SCATTERING; CONDUCTING CYLINDERS; QUADRATURE; SURFACES; SCHEME;
D O I
10.1080/02726343.2010.499065
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A finite difference delay modeling scheme is presented for the solution of the integral equations of two-dimensional transient electromagnetic scattering. The method discretizes the integral equations temporally using first- and second-order finite differences to map the Laplace-domain equations into the Z domain, before transforming to the discrete time domain. The resulting procedure is unconditionally stable because of the nature of the Laplace- to Z -domain mapping. Spatial discretization is achieved using second-order Lagrange basis functions with Galerkin's method. Exact curved-patch geometry modeling is used. Numerical results will demonstrate the accuracy and stability of this approach.
引用
收藏
页码:491 / 506
页数:16
相关论文
共 50 条