Energy Efficient MIMO-OFDM Spectrum Sensing Using Deep Stacked Spiking Delayed Feedback Reservoir Computing

被引:13
作者
Hamedani, Kian [1 ]
Liu, Lingjia [1 ]
Yi, Yang [1 ]
机构
[1] Virginia Tech, Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
来源
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING | 2021年 / 5卷 / 01期
基金
美国国家科学基金会;
关键词
Energy efficiency; MIMO; OFDM; DSS; spectrum sensing; reservoir computing; INFORMATION; NETWORKS;
D O I
10.1109/TGCN.2020.3046725
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This article introduces a novel energy efficient spectrum sensing method for multiple-input multiple-output and orthogonal frequency division multiplexing (MIMO-OFDM) systems in dynamic spectrum sharing (DSS) environments. To be specific, a spiking reservoir computing (RC) based approach is introduced for spectrum sensing of MIMO-OFDM systems to take advantage of the spatial and temporal correlations of the environment. In particular, we develop a spiking delayed feedback reservoir (DFR). DFRs are a new class of recurrent neural networks (RNNs) which tackle the vanishing gradient problem of traditional RNNs while spiking neurons are energy efficient and biologically plausible neuron models. We extend our introduced model in time and space domains to capture the spatial and temporal correlations in DSS environments. Conditional generative adversarial networks (cGANs) are introduced to tackle the data scarcity issue arose from applying machine learning techniques to MIMO-OFDM systems where training data is limited. Simulation results suggest that the probability of detection of the introduced RC based spectrum sensing at the low signal-to-noise (SNR) regime is significantly higher than the state-of-the-art techniques and the computational complexity is also reduced compared with traditional RNNs.
引用
收藏
页码:484 / 496
页数:13
相关论文
共 41 条
[1]   A Reliable Energy Efficient Dynamic Spectrum Sensing for Cognitive Radio IoT Networks [J].
Ansere, James Adu ;
Han, Guangjie ;
Wang, Hao ;
Choi, Chang ;
Wu, Celimuge .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (04) :6748-6759
[2]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[3]   Pattern formation on the edge of chaos: Experiments with CO oxidation on a Pt(110) surface under global delayed feedback [J].
Bertram, M ;
Beta, C ;
Pollmann, M ;
Mikhailov, AS ;
Rotermund, HH ;
Ertl, G .
PHYSICAL REVIEW E, 2003, 67 (03) :9
[4]   Neurons with Stereotyped and Rapid Responses Provide a Reference Frame for Relative Temporal Coding in Primate Auditory Cortex [J].
Brasselet, Romain ;
Panzeri, Stefano ;
Logothetis, Nikos K. ;
Kayser, Christoph .
JOURNAL OF NEUROSCIENCE, 2012, 32 (09) :2998-3008
[5]   Sensing OFDM Signal: A Deep Learning Approach [J].
Cheng, Qingqing ;
Shi, Zhenguo ;
Nguyen, Diep N. ;
Dutkiewicz, Eryk .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (11) :7785-7798
[6]   NEURONS ARE POISED NEAR THE EDGE OF CHAOS [J].
Chua, Leon ;
Sbitnev, Valery ;
Kim, Hyongsuk .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04)
[7]   Applications of machine learning to cognitive radio networks [J].
Clancy, Charles ;
Hecker, Joe ;
Stuntebeck, Erich ;
O'Shea, Tim .
IEEE WIRELESS COMMUNICATIONS, 2007, 14 (04) :47-52
[8]   Energy-Efficient Spectrum Sensing for IoT Devices [J].
Dao, Nhu-Ngoc ;
Na, Woongsoo ;
Tran, Anh-Tien ;
Nguyen, Diep N. ;
Cho, Sungrae .
IEEE SYSTEMS JOURNAL, 2021, 15 (01) :1077-1085
[9]  
Davaslioglu K, 2018, IEEE ICC
[10]   Reservoir computing using dynamic memristors for temporal information processing [J].
Du, Chao ;
Cai, Fuxi ;
Zidan, Mohammed A. ;
Ma, Wen ;
Lee, Seung Hwan ;
Lu, Wei D. .
NATURE COMMUNICATIONS, 2017, 8