Unbounded Fredholm operators and spectral flow

被引:59
作者
Booss-Bavnbek, B [1 ]
Lesch, M
Phillips, J
机构
[1] Roskilde Univ Ctr, Inst Matemat & Fys, DK-4000 Roskilde, Denmark
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[3] Univ Cologne, Inst Math, D-50931 Cologne, Germany
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2005年 / 57卷 / 02期
关键词
D O I
10.4153/CJM-2005-010-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the gap (= "projection norm" = "graph distance") topology of the space of all (not necessarily bounded) self-adjoint Fredholm operators in a separable Hilbert space by the Cayley transform and direct methods. In particular, we show the surprising result that this space is connected in contrast to the bounded case. Moreover, we present a rigorous definition of spectral flow of a path of such operators (actually alternative but mutually equivalent definitions) and prove the homotopy invariance. As an example, we discuss operator curves on manifolds with boundary.
引用
收藏
页码:225 / 250
页数:26
相关论文
共 19 条
[1]  
Atiyah M.F., 1969, PUBL MATH I HAUTES T, V37, P5
[2]   Spectral flow of paths of self-adjoint Fredholm operators [J].
Booss-Bavnbek, B ;
Lesch, M ;
Phillips, J .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 104 :177-180
[3]  
Booss-Bavnbek B., 2000, CONT MATH, V258, P21
[4]  
Booss-Bavnbek B, 1993, Elliptic boundary problems for Diracoperators, inMathematics:Theory&Applications
[5]  
BOOSSBAVNBEK B, 1998, TOKYO J MATH, V21, P1
[6]  
CORDES HO, 1963, J MATH MECH, V12, P693
[7]   ADIABATIC LIMITS OF THE ETA-INVARIANTS THE ODD-DIMENSIONAL ATIYAH-PATODI-SINGER PROBLEM [J].
DOUGLAS, RG ;
WOJCIECHOWSKI, KP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (01) :139-168
[8]  
DUNFORD N, 1958, LINEAR OPERTORS
[9]  
FURUTANI K, 2003, JAPAN J MATH, V28, P215
[10]   Trace expansions for pseudodifferential boundary problems for Dirac-type operators and more general systems [J].
Grubb, G .
ARKIV FOR MATEMATIK, 1999, 37 (01) :45-86