A hybrid quasi-Newton projected-gradient method with application to Lasso and basis-pursuit denoising

被引:10
作者
van den Berg, Ewout [1 ]
机构
[1] IBM TJ Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA
基金
美国国家科学基金会;
关键词
l(1) minimization; Quasi-Newton method; Projected gradient method;
D O I
10.1007/s12532-019-00163-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a new algorithm for the optimization of convex functions over a polyhedral set in The algorithm extends the spectral projected-gradient method with limited-memory BFGS iterates restricted to the present face whenever possible. We prove convergence of the algorithm under suitable conditions and apply the algorithm to solve the Lasso problem, and consequently, the basis-pursuit denoise problem through the root-finding framework proposed by van den Berg and Friedlander (SIAM J Sci Comput 31(2):890-912, 2008). The algorithm is especially well suited to simple domains and could also be used to solve bound-constrained problems as well as problems restricted to the simplex.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 23 条
[1]  
[Anonymous], 2003, NONLINEAR PROGRAMMIN
[2]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[3]   GOLDSTEIN-LEVITIN-POLYAK GRADIENT PROJECTION METHOD [J].
BERTSEKAS, DP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (02) :174-183
[4]   Nonmonotone spectral projected gradient methods on convex sets [J].
Birgin, EG ;
Martínez, JM ;
Raydan, M .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (04) :1196-1211
[5]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[6]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[7]   Compressed sensing with coherent and redundant dictionaries [J].
Candes, Emmanuel J. ;
Eldar, Yonina C. ;
Needell, Deanna ;
Randall, Paige .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 31 (01) :59-73
[8]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[9]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200
[10]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306