Lipid signaling and the modulation of surface charge during phagocytosis

被引:128
作者
Yeung, Tony [1 ]
Grinstein, Sergio [1 ]
机构
[1] Hosp Sick Children, Cell Biol Program, Toronto, ON M5G 1X8, Canada
关键词
phagocytosis; phospholipid; phosphoinositide; surface charge; phagosome maturation;
D O I
10.1111/j.1600-065X.2007.00546.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Phagocytosis is an important component of innate and adaptive immunity. The formation of phagosomes and the subsequent maturation that capacitates them for pathogen elimination and antigen presentation are complex processes that involve signal transduction, cytoskeletal reorganization, and membrane remodeling. Lipids are increasingly appreciated to play a crucial role in these events. Sphingolipids, cholesterol, and glycerophospholipids, notably the phosphoinositides, are required for the segregation of signaling microdomains and for the generation of second messengers. They are also instrumental in the remodeling of the actin cytoskeleton and in directing membrane traffic. They accomplish these feats by congregating into liquid-ordered domains, by generating active metabolites that activate receptors, and by recruiting and anchoring specific protein ligands to the membrane, often altering their conformation and catalytic activity. A less appreciated role of acidic phospholipids is their contribution to the negative surface charge of the inner leaflet of the plasmalemma. The unique negativity of the inner aspect of the plasma membrane serves to attract and anchor key signaling and effector molecules that are required to initiate phagosome formation. Conversely, the loss of charge that accompanies phospholipid metabolism as phagosomes seal facilitates the dissociation of proteins and the termination of signaling and cytoskeleton assembly. In this manner, lipids provide a binary electrostatic switch to control phagocytosis.
引用
收藏
页码:17 / 36
页数:20
相关论文
共 163 条
[1]   The inositol phosphatase SHIP-2 down-regulates FcγR-mediated phagocytosis in murine macrophages independently of SHIP-1 [J].
Ai, J ;
Maturu, A ;
Johnson, W ;
Wang, YJ ;
Marsh, CB ;
Tridandapani, S .
BLOOD, 2006, 107 (02) :813-820
[2]   Phosphoinositide-3-kinase-independent contractile activities associated with Fcγ-receptor-mediated phagocytosis and macropinocytosis in macrophages [J].
Araki, N ;
Hatae, T ;
Furukawa, A ;
Swanson, JA .
JOURNAL OF CELL SCIENCE, 2003, 116 (02) :247-257
[3]   A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages [J].
Araki, N ;
Johnson, MT ;
Swanson, JA .
JOURNAL OF CELL BIOLOGY, 1996, 135 (05) :1249-1260
[4]   The neutrophil NADPH oxidase [J].
Babior, BM ;
Lambeth, JD ;
Nauseef, W .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 397 (02) :342-344
[5]   Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles [J].
Bai, JN ;
Pagano, RE .
BIOCHEMISTRY, 1997, 36 (29) :8840-8848
[6]   A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha:: Studies with the PH domains of the oxysterol binding protein and FAPP1 [J].
Balla, A ;
Tuymetova, G ;
Tsiomenko, A ;
Várnai, P ;
Balla, T .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (03) :1282-1295
[7]   Raft localisation of FcγRIIa and efficient signaling are dependent on palmitoylation of cysteine 208 [J].
Barnes, NC ;
Powell, MS ;
Trist, HM ;
Gavin, AL ;
Wines, BD ;
Hogarth, PM .
IMMUNOLOGY LETTERS, 2006, 104 (1-2) :118-123
[8]   Sphingolipids and the regulation of the immune response [J].
Baumruker, T ;
Prieschl, EE .
SEMINARS IN IMMUNOLOGY, 2002, 14 (01) :57-63
[9]   A phosphatidylinositol-3-kinase-dependent signal transition regulates ARF1 and ARF6 during Fcγ receptor-mediated phagocytosis [J].
Beemiller, Peter ;
Hoppe, Adam D. ;
Swanson, Joel A. .
PLOS BIOLOGY, 2006, 4 (06) :987-999
[10]   Protein kinase Cδ is required for P47phox phosphorylation and translocation in activated human monocytes [J].
Bey, EA ;
Xu, B ;
Bhattacharjee, A ;
Oldfield, CM ;
Zhao, XX ;
Li, Q ;
Subbulakshmi, V ;
Feldman, GM ;
Wientjes, FB ;
Cathcart, MK .
JOURNAL OF IMMUNOLOGY, 2004, 173 (09) :5730-5738