Self-Supervised Saliency Estimation for Pixel Embedding in Road Detection

被引:6
作者
Zhou, Di [1 ]
Tian, Yan [3 ]
Chen, Wei-Gang [3 ]
Huang, Gang [2 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect EnGN, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ Technol Co Ltd, Hangzhou 310051, Peoples R China
[3] Zhejiang Gongshang Univ, Sch Comp & Informat Engn, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Roads; Estimation; Task analysis; Training; Image segmentation; Indexes; Benchmark testing; self-supervised learning; machine learning; signal processing; NETWORK;
D O I
10.1109/LSP.2021.3089912
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Road detection is an important task inthe signal processing field. Although self-supervised learning has the potential to learn rich and effective visual representations that avoid tedious labeling, the current approaches learn from object-centered images, which leads to ambiguous results in complex traffic scenarios. We introduce saliency estimation to extend the self-supervised segmentation beyond object-center images, with spatial-temporal information and ensemble learning employed to improve the robustness. Then, we also design a quadruple loss for the pixel embedding learning and optimize the affinity between different categories, while exploring structural information in negative pixels. Experiments on the public datasets show that our approach is competitive with state-of-the-art approaches.
引用
收藏
页码:1325 / 1329
页数:5
相关论文
共 38 条
  • [1] Adelson H., 2015, ABS151106811 CORR
  • [2] Progressive LiDAR Adaptation for Road Detection
    Chen, Zhe
    Zhang, Jing
    Tao, Dacheng
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (03) : 693 - 702
  • [3] Global Contrast based Salient Region Detection
    Cheng, Ming-Ming
    Zhang, Guo-Xin
    Mitra, Niloy J.
    Huang, Xiaolei
    Hu, Shi-Min
    [J]. 2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 409 - 416
  • [4] Cho J., 2018, PROC IEEE INT C MULT, P1, DOI [DOI 10.1109/ICME.2018.8486472, 10.1109/ICME.2018.8486472]
  • [5] Triplet Loss in Siamese Network for Object Tracking
    Dong, Xingping
    Shen, Jianbing
    [J]. COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 : 472 - 488
  • [6] Fritsch J, 2013, IEEE INT C INTELL TR, P1693, DOI 10.1109/ITSC.2013.6728473
  • [7] Hard Pixel Mining for Depth Privileged Semantic Segmentation
    Gu, Zhangxuan
    Niu, Li
    Zhao, Haohua
    Zhang, Liqing
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 3738 - 3751
  • [8] He K, 2020, P IEEE CVF C COMP VI, P9729
  • [9] Invariant Information Clustering for Unsupervised Image Classification and Segmentation
    Ji, Xu
    Henriques, Joao F.
    Vedaldi, Andrea
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9864 - 9873
  • [10] Saliency Detection via Absorbing Markov Chain
    Jiang, Bowen
    Zhang, Lihe
    Lu, Huchuan
    Yang, Chuan
    Yang, Ming-Hsuan
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1665 - 1672