Periodic and Solitary Wave Solutions for the One-Dimensional Cubic Nonlinear Schrodinger Model

被引:0
作者
Bica, Ion [1 ]
Mucalica, Ana [1 ]
机构
[1] MacEwan Univ, Dept Math & Stat, 10700 104 Ave NW, Edmonton, AB T5J 4S2, Canada
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2022年 / 30卷 / 02期
关键词
NLS; self-focusing; defocusing; dispersive; nonlinearity; carrier waves; solution profile; envelope; cnoidal waves; solitary waves; surface gravity waves; sound waves; water-air interface; sonic layer depth; EQUATIONS; EVOLUTION;
D O I
10.2478/auom-2022-0018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a similar approach as Korteweg and de Vries, [19], we obtain periodic solutions expressed in terms of the Jacobi elliptic function cn, [3], for the self-focusing and defocusing one-dimensional cubic nonlinear Schrodinger equations. We will show that solitary wave solutions are recovered through a limiting process after the elliptic modulus of the Jacobi elliptic function cn that describes the periodic solutions for the self-focusing nonlinear Schrodinger model.
引用
收藏
页码:45 / 62
页数:18
相关论文
共 50 条
  • [41] POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL p-LAPLACIAN WITH NONLINEAR BOUNDARY CONDITIONS
    Hai, D. D.
    Wang, X.
    [J]. OPUSCULA MATHEMATICA, 2019, 39 (05) : 675 - 689
  • [42] Solitary wave interaction for a higher-order nonlinear Schrodinger equation
    Hoseini, S. M.
    Marchant, T. R.
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2007, 72 (02) : 206 - 222
  • [43] Solitary wave for a nonintegrable discrete nonlinear Schrodinger equation in nonlinear optical waveguide arrays
    Ma, Li-Yuan
    Ji, Jia-Liang
    Xu, Zong-Wei
    Zhu, Zuo-Nong
    [J]. CHINESE PHYSICS B, 2018, 27 (03)
  • [44] Exact traveling wave solutions to the nonlinear Schrodinger equation
    Abdoulkary, Saidou
    Mohamadou, Alidou
    Beda, Tibi
    Gambo, Betchewe
    Doka, Serge Y.
    Alim
    Mahamoudou, Aboubakar
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 109 - 115
  • [45] New Solitary Solutions of (2+1)-Dimensional Variable Coefficient Nonlinear Schrodinger Equation with an External Potential
    Song Zhao-Hui
    Ding Qi
    Mei Jian-Qin
    Zhang Hong-Qing
    [J]. CHINESE PHYSICS LETTERS, 2010, 27 (01)
  • [46] Superconductivity and charge density wave under a time-dependent periodic field in the one-dimensional attractive Hubbard model
    Fujiuchi, Ryo
    Kaneko, Tatsuya
    Sugimoto, Koudai
    Yunoki, Seiji
    Ohta, Yukinori
    [J]. PHYSICAL REVIEW B, 2020, 101 (23)
  • [47] EXACT SOLUTIONS FOR PERIODIC AND SOLITARY MATTER WAVES IN NONLINEAR LATTICES
    Tsang, Cheng Hou
    Malomed, Boris A.
    Chow, Kwok Wing
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (05): : 1299 - 1325
  • [48] Periodic traveling waves of a SIR model with renewal and delay in one-dimensional lattice
    Yang, Lu
    Li, Yongkun
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024,
  • [49] Orbital Stability of dn Periodic Wave Solutions of the Boussinesq Equation with Quadratic-Cubic Nonlinear Terms
    Hong, Si-Yu
    Zhang, Wei-Guo
    Ling, Xing-Qian
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (02) : 455 - 474
  • [50] STABILITY OF SMALL SOLITARY WAVES FOR THE ONE-DIMENSIONAL NLS WITH AN ATTRACTIVE DELTA POTENTIAL
    Masaki, Satoshi
    Murphy, Jason
    Segata, Jun-ichi
    [J]. ANALYSIS & PDE, 2020, 13 (04): : 1099 - 1128