Periodic and Solitary Wave Solutions for the One-Dimensional Cubic Nonlinear Schrodinger Model

被引:0
作者
Bica, Ion [1 ]
Mucalica, Ana [1 ]
机构
[1] MacEwan Univ, Dept Math & Stat, 10700 104 Ave NW, Edmonton, AB T5J 4S2, Canada
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2022年 / 30卷 / 02期
关键词
NLS; self-focusing; defocusing; dispersive; nonlinearity; carrier waves; solution profile; envelope; cnoidal waves; solitary waves; surface gravity waves; sound waves; water-air interface; sonic layer depth; EQUATIONS; EVOLUTION;
D O I
10.2478/auom-2022-0018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a similar approach as Korteweg and de Vries, [19], we obtain periodic solutions expressed in terms of the Jacobi elliptic function cn, [3], for the self-focusing and defocusing one-dimensional cubic nonlinear Schrodinger equations. We will show that solitary wave solutions are recovered through a limiting process after the elliptic modulus of the Jacobi elliptic function cn that describes the periodic solutions for the self-focusing nonlinear Schrodinger model.
引用
收藏
页码:45 / 62
页数:18
相关论文
共 50 条
  • [31] High-order rational solutions and rogue wave for the (2+1)-dimensional nonlinear Schrodinger equation
    Liu, Wenhao
    Zhang, Yufeng
    PHYSICA SCRIPTA, 2020, 95 (04)
  • [32] Solutions of solitary-wave for the variable-coefficient nonlinear Schrodinger equation with two power-law nonlinear terms
    Xin, Le
    Kong, Ying
    Han, Lijia
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (28):
  • [33] Bifurcations of Traveling Wave Solutions of a Nonlinear Wave Model Created by Diffraction in Periodic Media
    Li, Jibin
    Chen, Fengjuan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (02):
  • [34] On the eigenfunctions of the one-dimensional Schrodinger operator with a polynomial potential
    Mironov, A. E.
    Saparbayeva, B. T.
    DOKLADY MATHEMATICS, 2015, 91 (02) : 171 - 172
  • [35] Control of light propagation in one-dimensional quasi-periodic nonlinear photonic lattices
    Radosavljevic, Ana
    Gligoric, Goran
    Maluckov, Aleksandra
    Stepic, Milutin
    JOURNAL OF OPTICS, 2014, 16 (02)
  • [36] HIGH FIDELITY METHODS FOR MODELING NONLINEAR WAVE PROPAGATION IN ONE-DIMENSIONAL WAVEGUIDES
    Liu, Yu
    Ghaderi, Pooya
    Dick, Andrew J.
    INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 4, PTS A AND B, 2013, : 741 - 750
  • [37] Nonlinear regimes of spin wave propagation in a waveguide with a one-dimensional hole array
    Martyshkin, A. A.
    Sadovnikov, A. V.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2024, 32 (04): : 428 - 438
  • [38] Long-period limit of exact periodic traveling wave solutions for the derivative nonlinear Schrodinger equation
    Hayashi, Masayuki
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (05): : 1331 - 1360
  • [39] The Riemann problem for a one-dimensional nonlinear wave system with different gamma laws
    Wang, Guodong
    Liu, Jia-Bao
    Zhao, Lin
    BOUNDARY VALUE PROBLEMS, 2017,
  • [40] Existence of time periodic solutions for one-dimensional p-Laplacian with multiple delays
    Yang, Ying
    Yin, Jingxue
    Jin, Chunhua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) : 764 - 777