Strictly Positive Definite Functions on Compact Two-Point Homogeneous Spaces: the Product Alternative

被引:3
作者
Bonfim, Rafaela N. [1 ]
Guella, Jean C. [2 ]
Menegatto, Valdir A. [2 ]
机构
[1] Univ Fed Sao Joao Del Rei, DEMAT, Praca Frei Orlando 170, BR-36307352 Sao Joao Del Rei, MG, Brazil
[2] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
strict positive definiteness; spheres; product kernels; linearization formulas; isotropy; JACOBI-POLYNOMIALS; KERNELS; SPHERES; LINEARIZATION;
D O I
10.3842/SIGMA.2018.112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two continuous and isotropic positive definite kernels on the same compact two-point homogeneous space, we determine necessary and sufficient conditions in order that their product be strictly positive definite. We also provide a similar characterization for kernels on the space-time setting G x S-d, where G is a locally compact group and S-d is the unit sphere in Rd+1, keeping isotropy of the kernels with respect to the S-d component. Among other things, these results provide new procedures for the construction of valid models for interpolation and approximation on compact two-point homogeneous spaces.
引用
收藏
页数:14
相关论文
共 29 条
[1]  
[Anonymous], 1975, AM MATH SOC C PUBLIC
[2]  
[Anonymous], 1985, Matrix Analysis
[3]  
[Anonymous], 2000, MATH SURVEYS MONOGRA
[4]  
Askey R., 1975, Orthogonal polynomials and special functions
[5]   Strict positive definiteness on products of compact two-point homogeneous spaces [J].
Barbosa, V. S. ;
Menegatto, V. A. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 28 (01) :56-73
[6]   STRICTLY POSITIVE DEFINITE KERNELS ON COMPACT TWO-POINT HOMOGENEOUS SPACES [J].
Barbosa, V. S. ;
Menegatto, V. A. .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (02) :743-756
[7]   From Schoenberg Coefficients to Schoenberg Functions [J].
Berg, Christian ;
Porcu, Emilio .
CONSTRUCTIVE APPROXIMATION, 2017, 45 (02) :217-241
[8]  
BINGHAM NH, 1973, P CAMB PHILOS SOC, V73, P145
[9]   A necessary and sufficient condition for strictly positive definite functions on spheres [J].
Chen, DB ;
Menegatto, VA ;
Xun, XP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (09) :2733-2740
[10]   Strict positive definiteness in geostatistics [J].
De Iaco, S. ;
Posa, D. .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (03) :577-590