On the existence and uniqueness of limit cycles in Lienard differential equations allowing discontinuities

被引:52
作者
Llibre, Jaume [1 ]
Ponce, Enrique [2 ]
Torres, Francisco [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] ETS Ingenieros, Camino Descubrimientos, Seville 41092, Spain
关键词
D O I
10.1088/0951-7715/21/9/013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the non-existence and the uniqueness of limit cycles for the Lienard differential equation of the form x '' - f (x) x ' + g(x) = 0 where the functions f and g satisfy xf (x) > 0 and xg(x) > 0 for x not equal 0 but can be discontinuous at x = 0. In particular, our results allow us to prove the non-existence of limit cycles under suitable assumptions, and also prove the existence and uniqueness of a limit cycle in a class of discontinuous Lienard systems which are relevant in engineering applications.
引用
收藏
页码:2121 / 2142
页数:22
相关论文
共 28 条
  • [1] [Anonymous], 1999, NONLINEAR ORDINARY D
  • [2] Banerjee S., 2001, NONLINEAR PHENOMENA
  • [3] Carmona V, 2006, DISCRETE CONT DYN-A, V16, P689
  • [4] On simplifying and classifying piecewise-linear systems
    Carmona, V
    Freire, E
    Ponce, E
    Torres, F
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2002, 49 (05): : 609 - 620
  • [5] COPPEL WA, 1989, DYNAMICS REPORTED, V2
  • [6] DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
  • [7] CUBIC LIENARD EQUATIONS WITH LINEAR DAMPING
    DUMORTIER, F
    ROUSSEAU, C
    [J]. NONLINEARITY, 1990, 3 (04) : 1015 - 1039
  • [8] On the uniqueness of limit cycles surrounding one or more singularities for Lienard equations
    Dumortier, F
    Li, CZ
    [J]. NONLINEARITY, 1996, 9 (06) : 1489 - 1500
  • [9] Dumortier F, 2006, UNIVERSITEXT, P1
  • [10] Bifurcation sets of continuous piecewise linear systems with two zones
    Freire, E
    Ponce, E
    Rodrigo, F
    Torres, F
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (11): : 2073 - 2097