Assembly and subunit stoichiometry of the functional helicase-primase (primosome) complex of bacteriophage T4

被引:15
作者
Jose, Davis
Weitzel, Steven E.
Jing, Debra
von Hippel, Peter H. [1 ]
机构
[1] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA
关键词
DNA-protein complexes; macromolecular machines; duplex DNA unwinding; replication complex assembly; DNA-REPLICATION; ELECTRON-MICROSCOPY; HEXAMERIC HELICASE; PRIMER SYNTHESIS; STRANDED-DNA; GP41; FORMS; PROTEIN; GP61; TRANSLOCATION; SEQUENCE;
D O I
10.1073/pnas.1210040109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Physical biochemical techniques are used to establish the structure, subunit stoichiometry, and assembly pathway of the primosome complex of the bacteriophage T4 DNA replication system. Analytical ultracentrifugation and fluorescence anisotropy methods show that the functional T4 primosome consists of six gp41 helicase subunits that assemble into a hexagon, driven by the binding of six NTPs (or six nonhydrolyzable GTP gamma S analogues) that are located at and stabilize the intersubunit interfaces, together with a single tightly bound gp61 primase subunit. Assembling the components of the primosome onto a model DNA replication fork is a multistep process, but equilibrium cannot be reached along all mixing pathways. Producing a functional complex requires that the helicase hexamer be assembled in the presence of the DNA replication fork construct prior to the addition of the primase to avoid the formation of metastable DNA-protein aggregates. The gp41 helicase hexamer binds weakly to fork DNA in the absence of primase, but forms a much more stable primosome complex that expresses full and functional helicase (and primase) activities when bound to a gp61 primase subunit at a helicase: primase subunit ratio of 6: 1. The presence of additional primase subunits does not change the molecular mass or helicase activity of the primosome, but significantly inhibits its primase activity. We develop both an assembly pathway and a minimal mechanistic model for the structure and function of the T4 primosome that are likely to be relevant to the assembly and function of the replication primosome subassemblies of higher organisms as well.
引用
收藏
页码:13596 / 13601
页数:6
相关论文
共 26 条
[2]   FRICTIONAL COEFFICIENTS OF MULTISUBUNIT STRUCTURES .1. THEORY [J].
BLOOMFIE.V ;
DALTON, WO ;
VANHOLDE, KE .
BIOPOLYMERS, 1967, 5 (02) :135-&
[3]   INTERACTIONS OF ESCHERICHIA-COLI PRIMARY REPLICATIVE HELICASE DNAB PROTEIN WITH SINGLE-STRANDED-DNA - THE NUCLEIC-ACID DOES NOT WRAP AROUND THE PROTEIN HEXAMER [J].
BUJALOWSKI, W ;
JEZEWSKA, MJ .
BIOCHEMISTRY, 1995, 34 (27) :8513-8519
[4]   Hydrodynamic properties of rigid particles: Comparison of different modeling and computational procedures [J].
Carrasco, B ;
de la Torre, JG .
BIOPHYSICAL JOURNAL, 1999, 76 (06) :3044-3057
[5]   THE PHAGE T4-CODED DNA-REPLICATION HELICASE (GP41) FORMS A HEXAMER UPON ACTIVATION BY NUCLEOSIDE TRIPHOSPHATE [J].
DONG, F ;
GOGOL, EP ;
VONHIPPEL, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (13) :7462-7473
[6]   The ATP-activated hexameric helicase of bacteriophage T4 (gp41) forms a stable primosome with a single subunit of T4-coded primase (gp61) [J].
Dong, F ;
vonHippel, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (32) :19625-19631
[7]   A coupled complex of T4 DNA replication helicase (gp41) and polymerase (gp43) can perform rapid and processive DNA strand-displacement synthesis [J].
Dong, F ;
Weitzel, SE ;
vonHippel, PH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (25) :14456-14461
[8]   Mechanism of DNA translocation in a replicative hexameric helicase [J].
Enemark, Eric J. ;
Joshua-Tor, Leemor .
NATURE, 2006, 442 (7100) :270-275
[9]   Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy [J].
Erickson, Harold P. .
BIOLOGICAL PROCEDURES ONLINE, 2009, 11 (01) :32-51
[10]   Interactions of bacteriophage T4-coded primase (gp61) with the T4 replication helicase (gp41) and DNA in primosome formation [J].
Jing, DH ;
Dong, F ;
Latham, GJ ;
von Hippel, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (38) :27287-27298