A Joint Model for Topic-Sentiment Evolution over Time

被引:41
作者
Dermouche, Mohamed [1 ,2 ]
Velcin, Julien [1 ]
Khouas, Leila [2 ]
Loudcher, Sabine [1 ]
机构
[1] Univ Lyon ERIC LYON 2, Lyon, France
[2] AMI Software R&D, Montpellier, France
来源
2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM) | 2014年
关键词
joint topic sentiment models; time series; trend analysis; topic models; sentiment analysis; opinion mining;
D O I
10.1109/ICDM.2014.82
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most existing topic models focus either on extracting static topic-sentiment conjunctions or topic-wise evolution over time leaving out topic-sentiment dynamics and missing the opportunity to provide a more in-depth analysis of textual data. In this paper, we propose an LDA-based topic model for analyzing topic-sentiment evolution over time by modeling time jointly with topics and sentiments. We derive inference algorithm based on Gibbs Sampling process. Finally, we present results on reviews and news datasets showing interpretable trends and strong correlation with ground truth in particular for topic-sentiment evolution over time.
引用
收藏
页码:773 / 778
页数:6
相关论文
共 19 条
[1]  
[Anonymous], TECH REP
[2]  
[Anonymous], 2012, P INT AAAI C WEB SOC, DOI DOI 10.1609/ICWSM.V6I1.14281
[3]  
Bigi B, 2003, LECT NOTES COMPUT SC, V2633, P305
[4]  
Blei D.M., 2006, INT C MACHINE LEARNI, DOI DOI 10.1145/1143844.1143859
[5]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[6]  
Blitzer J., 2007, P 45 ANN M ASS COMP, P440
[7]  
Chen Zheng., 2013, SDM, P767
[8]   Finding scientific topics [J].
Griffiths, TL ;
Steyvers, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 :5228-5235
[9]  
He Y., 2014, TIST, V9
[10]   Probabilistic latent semantic indexing [J].
Hofmann, T .
SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 1999, :50-57