Monotonic Positive Solutions of Nonlocal Boundary Value Problems for a Second-Order Functional Differential Equation

被引:1
作者
El-Sayed, A. M. A. [2 ]
Hamdallah, E. M. [2 ]
El-Kadeky, Kh. W. [1 ]
机构
[1] Garyounis Univ, Fac Sci, Benghazi, Libya
[2] Univ Alexandria, Fac Sci, Alexandria, Egypt
关键词
EXISTENCE;
D O I
10.1155/2012/489353
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of at least one monotonic positive solution for the nonlocal boundary value problem of the second-order functional differential equation x ''(t) = f(t,x(phi(t))), t is an element of (0,1), with the nonlocal condition Sigma(m)(k=1) a(k)(x)(tau(k)) = x(0), x'(0) + Sigma(n)(j=1) (eta(j)) = x(1), where tau(k) is an element of (a,d) subset of (0,1), eta(j) is an element of (c,e) subset of (0,1), and x(0), x(1) > 0. As an application the integral and the nonlocal conditions integral(d)(a) x(t)dt = x(0), x'(0) + x(e) - x(c) = x(1) will be considered.
引用
收藏
页数:12
相关论文
共 22 条
[1]   Existence of solutions for a three-point boundary value problem at resonance [J].
An, Yulian .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (08) :1633-1643
[2]  
[Anonymous], ALEXANDRIA J MATH
[3]  
Curtain R., 1977, FUNCTIONAL ANAL MODE
[4]  
Eloe PW, 2002, J KOREAN MATH SOC, V39, P319
[5]  
Feng Yuqiang, 2004, [Bulletin of the KMS, 대한수학회보], V41, P483
[6]  
Goebel K., 1990, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, V28
[7]   Three positive solutions for a nonlinear nth-order m-point boundary value problem [J].
Guo, Yanping ;
Ji, Yude ;
Zhang, Jiehua .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) :3485-3492
[8]   SOLVABILITY OF A 3-POINT NONLINEAR BOUNDARY-VALUE PROBLEM FOR A 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATION [J].
GUPTA, CP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (02) :540-551
[9]  
Il'in V.A., 1987, Differ. Uravn, V23, P1422
[10]  
Ilyin V. A., 1987, Differ. Uravn, V23, P1198