The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data

被引:179
作者
Yokelson, R. J. [1 ]
Christian, T. J. [1 ]
Karl, T. G. [2 ]
Guenther, A. [2 ]
机构
[1] Univ Montana, Dept Chem, Missoula, MT 59812 USA
[2] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
基金
美国国家科学基金会;
关键词
D O I
10.5194/acp-8-3509-2008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As part of the Tropical Forest and Fire Emissions Experiment (TROFFEE), tropical forest fuels were burned in a large. biomass-fire simulation facility and the smoke was characterized with open-path Fourier transform infrared spectroscopy (FTIR), proton-transfer reaction mass spectrometry (PTR-MS), gas chromatography (GC), GC/PTR-MS, and filter sampling of the particles. In most cases, about one-third of the fuel chlorine ended up in the particles and about one-half remained in the ash. About 50% of the mass of non-methane organic compounds (NMOC) emitted by these fires could be identified with the available instrumentation. The lab fire emission factors (EF, g compound emitted per kg dry fuel burned) were coupled with EF obtained during the TROFFEE airborne and ground-based field campaigns. This revealed several types of EF dependence on parameters such as the ratio of flaming to smoldering combustion and fuel characteristics. The synthesis of data from the different TROFFEE platforms was also used to derive EF for all the measured species for both primary deforestation fires and pasture maintenance fires - the two main types of biomass burning in the Amazon. Many of the EF are larger than those in widely-used earlier work. This is mostly due to the inclusion of newly-available, large EF for the initially-unlofted smoldering emissions from residual logs in pastures and the assumption that these emissions make a significant contribution (similar to 40%) to the total emissions from pasture fires. The TROFFEE EF for particles with aerodynamic diameter <2.5 microns (EFPM2.5) is 14.8 g/ka for primary deforestation fires and 18.7 g/kg for pasture maintenance fires. These EFPM2.5 are significantly larger than a previous recommendation (9.1 g/kg) and lead to an estimated pyrogenic primary PM2.5 source for the Amazon that is 84% larger. New regional budgets for biogenic and pyrogenic emissions were roughly estimated. Coupled with an estimate of secondary aerosol formation in the Amazon and source apportionment Studies, the regional budgets suggest that similar to 5% of the total mass of the regionally generated NMOC end up as secondary organic aerosol within the Amazonian boundary layer within 1-3 days. New global budgets confirm that biogenic emissions and biomass burning are the two largest global sources of NMOC with an estimated production of approximately 1000 (770-1400) and 500 (250-630) Tg/yr, respectively. It follows that plants and fires may also be the two main global Sources of secondary organic aerosol. A limited set of emission ratios (ER) is given for sugar cane burning which may help estimate the air quality impacts of burning C, this major or crop, which is often grown in densely populated areas.
引用
收藏
页码:3509 / 3527
页数:19
相关论文
共 45 条
[1]   Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry [J].
Andreae, MO ;
Crutzen, PJ .
SCIENCE, 1997, 276 (5315) :1052-1058
[2]   Emission of trace gases and aerosols from biomass burning [J].
Andreae, MO ;
Merlet, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (04) :955-966
[3]   Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region [J].
Andreae, MO ;
Artaxo, P ;
Fischer, H ;
Freitas, SR ;
Grégoire, JM ;
Hansel, A ;
Hoor, P ;
Kormann, R ;
Krejci, R ;
Lange, L ;
Lelieveld, J ;
Lindinger, W ;
Longo, K ;
Peters, W ;
de Reus, M ;
Scheeren, B ;
Dias, MAFS ;
Ström, J ;
van Velthoven, PFJ ;
Williams, J .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (06) :951-954
[4]   Large-scale aerosol source apportionment in Amazonia [J].
Artaxo, P ;
Fernandes, ET ;
Martins, JV ;
Yamasoe, MA ;
Hobbs, PV ;
Maenhaut, W ;
Longo, KM ;
Castanho, A .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D24) :31837-31847
[5]   Trace gas and particle emissions from fires in large diameter and belowground biomass fuels [J].
Bertschi, I ;
Yokelson, RJ ;
Ward, DE ;
Babbitt, RE ;
Susott, RA ;
Goode, JG ;
Hao, WM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D13)
[6]   Trace gas emissions from the production and use of domestic biofuels in Zambia measured by open-path Fourier transform infrared spectroscopy [J].
Bertschi, IT ;
Yokelson, RJ ;
Ward, DE ;
Christian, TJ ;
Hao, WM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D13)
[7]  
Brasseur GP, 1999, TOP ENVIRONM CHEM, P117
[8]   The impact of sugar cane-burning emissions on the respiratory system of children and the elderly [J].
Cançado, JE ;
Saldiva, PHN ;
Pereira, LAA ;
Lara, LBLS ;
Artaxo, P ;
Martinelli, LA ;
Arbex, MA ;
Zanobetti, A ;
Braga, ALF .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2006, 114 (05) :725-729
[9]   The tropical forest and fire emissions experiment: Trace gases emitted by smoldering logs and dung from deforestation and pasture fires in Brazil [J].
Christian, Ted J. ;
Yokelson, Robert J. ;
Carvalho, Joao A., Jr. ;
Griffith, David W. T. ;
Alvarado, Ernesto C. ;
Santos, Jose C. ;
Neto, Turibio Gomes Soares ;
Gurgel Veras, Carlos A. ;
Hao, Wei Min .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D18)
[10]   Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC- MS/FID/ECD [J].
Christian, TJ ;
Kleiss, B ;
Yokelson, RJ ;
Holzinger, R ;
Crutzen, PJ ;
Hao, WM ;
Shirai, T ;
Blake, DR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D2)