Asymptotic behaviour of positive large solutions of quasilinear logistic problems

被引:0
作者
Alsaedi, Ramzi [1 ]
Maagli, Habib [1 ]
Radulescu, Vicentiu D. [1 ,2 ]
Zeddini, Noureddine [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Romanian Acad, Inst Math Simion Stoilow, Bucharest 014700, Romania
关键词
asymptotic behaviour; positive solution; boundary blow-up; maximum principle; BOUNDARY BLOW-UP; ELLIPTIC-EQUATIONS; EXPLOSIVE SOLUTIONS; EXISTENCE; UNIQUENESS; REGULARITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the asymptotic analysis of singular solutions with blowup boundary for a class of quasilinear logistic equations with indefinite potential. Under natural assumptions, we study the competition between the growth of the variable weight and the behaviour of the nonlinear term, in order to establish the blow-up rate of the positive solution. The proofs combine the Karamata regular variation theory with a related comparison principle. The abstract result is illustrated with an application to the logistic problem with convection.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 46 条
[11]   EXPLOSIVE SOLUTIONS OF QUASI-LINEAR ELLIPTIC-EQUATIONS - EXISTENCE AND UNIQUENESS [J].
DIAZ, G ;
LETELIER, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (02) :97-125
[12]   Boundary blow-up solutions and their applications in quaselinear elliptic equations [J].
Du, YH ;
Guo, ZM .
JOURNAL D ANALYSE MATHEMATIQUE, 2003, 89 (1) :277-302
[13]  
Du YH, 2004, DIFFER INTEGRAL EQU, V17, P819
[14]   Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up [J].
García-Melián, J ;
Letelier-Albornoz, R ;
De Lis, JS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (12) :3593-3602
[15]   Large solutions for equations involving the p-Laplacian and singular weights [J].
Garcia-Melian, Jorge .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04) :594-607
[16]  
García-Melián J, 2009, ADV NONLINEAR STUD, V9, P165
[17]  
Ghergu M, 2012, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-3-642-22664-9
[18]   Structure of boundary blow-up solutions for quasilinear elliptic problems I. Large and small solutions [J].
Guo, ZM ;
Webb, JRL .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :615-642
[19]   Structure of boundary blow-up solutions for quasi-linear elliptic problems II: small and intermediate solutions [J].
Guo, ZM ;
Webb, JRL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 211 (01) :187-217
[20]  
Karamata J., 1933, Bull. Soc. Math. France, V61, P55